Key Laboratory of Microelectronic Devices and Circuits (MOE), Department of Micro/nanoelectronics, Peking University, Beijing, 100871, China.
School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.
Nat Commun. 2020 Jul 7;11(1):3399. doi: 10.1038/s41467-020-17215-3.
As a key building block of biological cortex, neurons are powerful information processing units and can achieve highly complex nonlinear computations even in individual cells. Hardware implementation of artificial neurons with similar capability is of great significance for the construction of intelligent, neuromorphic systems. Here, we demonstrate an artificial neuron based on NbO volatile memristor that not only realizes traditional all-or-nothing, threshold-driven spiking and spatiotemporal integration, but also enables dynamic logic including XOR function that is not linearly separable and multiplicative gain modulation among different dendritic inputs, therefore surpassing neuronal functions described by a simple point neuron model. A monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbO memristor based neurons and nonvolatile TaO memristor based synapses in a single crossbar array is experimentally demonstrated, showing capability in pattern recognition through online learning using a simplified δ-rule and coincidence detection, which paves the way for bio-inspired intelligent systems.
作为生物皮层的关键构建模块,神经元是强大的信息处理单元,即使在单个细胞中也能实现高度复杂的非线性计算。具有类似功能的人工神经元的硬件实现对于构建智能、神经形态系统具有重要意义。在这里,我们展示了一种基于 NbO 易失性忆阻器的人工神经元,它不仅实现了传统的全有或全无、阈值驱动的尖峰和时空积分,还实现了包括异或(XOR)函数在内的动态逻辑,以及不同树突输入之间的乘法增益调制,从而超越了简单点神经元模型所描述的神经元功能。通过使用简化的 δ 规则和一致性检测进行在线学习,实验证明了一个由易失性 NbO 忆阻器神经元和非易失性 TaO 忆阻器突触组成的 4×4 全忆阻神经网络具有模式识别能力,为仿生智能系统铺平了道路。