Suppr超能文献

我是走是留?量化恐惧景观,以加强高度转化景观中路网的环境管理。

Should I stay or move? Quantifying landscape of fear to enhance environmental management of road networks in a highly transformed landscape.

机构信息

Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

出版信息

J Environ Manage. 2024 Sep;368:122192. doi: 10.1016/j.jenvman.2024.122192. Epub 2024 Aug 13.

Abstract

The development and expansion of road networks pose considerable threats to natural habitats and wildlife, fostering a landscape of fear. In addition to direct mortality caused by road collisions, road construction and maintenance often result in habitat fragmentation and loss, impeding animal movement and gene flow between populations. Mountain ungulates are already confined to fragmented habitat patches and roads can cause substantial disturbances to their critical ecological processes, such as dispersal and migration. In this study, we employed two key mountain ungulates, the wild goat (Capra aegagrus) and mouflon (Ovis gmelini), as functional models to examine how road networks impact the quantity and connectivity of natural habitats in southwestern Iran, where extensive road construction has led to significant landscape changes. We used the MaxEnt method to predict species distribution, the circuit theory to evaluate habitat connectivity, and the Spatial Road Disturbance Index (SPROADI) to assess road impacts. During the modeling process, we selected eleven important variables and employed a model parametrization strategy to identify the optimal configuration for the MaxEnt model. For SPROADI index we used three sub-indices, including traffic intensity, vicinity impact, and fragmentation grade. We then integrated the results of these analyses to identify areas with the most significant environmental impacts of roads on the coherency of the natural habitats. The findings indicate that suitable habitats for wild goats are widely distributed across the study area, while suitable habitats for mouflon are primarily concentrated in the northeastern region. Conservation gap analysis revealed that only 8% of wild goat habitats and 7% of mouflon habitats are covered by protected areas (PAs). The SPROADI map highlighted that 23% of the study area is negatively influenced by road networks. Moreover, 30.4% of highest-probability corridors for mouflon, and 25.7% for wild goat, were highly vulnerable to the impacts of roads. Our combined approach enabled us to quantitatively assess species-specific vulnerability to the impacts of heavy road networks. This study emphasizes the urgent need to address the negative effects of road networks on wildlife habitats and connectivity corridors. Our approach effectively identifies sensitive areas, which can help inform mitigation strategies and support more effective conservation planning in significantly transformed landscapes.

摘要

道路网络的发展和扩张对自然栖息地和野生动物构成了相当大的威胁,形成了一个充满恐惧的景观。除了道路碰撞直接导致的死亡率外,道路建设和维护常常导致栖息地破碎化和丧失,阻碍动物在种群之间的移动和基因流动。山地羚羊已经局限在破碎的栖息地斑块中,道路会对它们的关键生态过程造成严重干扰,如扩散和迁移。在这项研究中,我们以两种关键的山地羚羊——野山羊(Capra aegagrus)和摩弗伦羊(Ovis gmelini)——作为功能模型,研究了伊朗西南部的道路网络如何影响自然栖息地的数量和连通性。在那里,广泛的道路建设导致了显著的景观变化。我们使用最大熵方法预测物种分布,电路理论评估栖息地连通性,以及空间道路干扰指数(SPROADI)评估道路影响。在建模过程中,我们选择了 11 个重要变量,并采用模型参数化策略来确定最大熵模型的最佳配置。对于 SPROADI 指数,我们使用了三个子指数,包括交通强度、临近影响和破碎化程度。然后,我们将这些分析的结果整合起来,以确定道路对自然栖息地连贯性产生最显著环境影响的区域。研究结果表明,野山羊的适宜栖息地在研究区域内广泛分布,而摩弗伦羊的适宜栖息地主要集中在东北部地区。保护缺口分析显示,只有 8%的野山羊栖息地和 7%的摩弗伦羊栖息地被保护区(PAs)覆盖。SPROADI 地图显示,23%的研究区域受到道路网络的负面影响。此外,摩弗伦羊的最高概率廊道中有 30.4%,野山羊中有 25.7%,对道路的影响非常脆弱。我们的综合方法使我们能够定量评估特定物种对重型道路网络影响的脆弱性。这项研究强调了迫切需要解决道路网络对野生动物栖息地和连通性走廊的负面影响。我们的方法有效地确定了敏感区域,这可以为减轻策略提供信息,并在发生重大变化的景观中支持更有效的保护规划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验