Beka Lemu Girma, Bu Xiangrui, Li Xin, Wang Xiaoli, Han Chuanyu, Liu Weihua
School of Microelectronics, School of Electronic and Information Engineering, Xi'an Jiaotong University Xi'an 710049 P. R. China
RSC Adv. 2019 Nov 7;9(62):36123-36135. doi: 10.1039/c9ra07061c. eCollection 2019 Nov 4.
Metal organic frameworks (MOFs) with two dimensional (2D) nanosheets have attracted special attention for supercapacitor application due to their exceptional large surface area and high surface-to-volume atom ratios. However, their electrochemical performance is greatly hindered by their poor electrical conductivity. Herein, we report a 2D nanosheet nickel cobalt based MOF (NiCo-MOF)/reduced graphene oxide heterostructure as an electrode material for supercapacitors. The NiCo-MOF 2D nanosheets are grown on rGO surfaces by simple room temperature precipitation. In such hybrid structure the MOF ultrathin nanosheets provide large surface area with abundant channels for fast mass transport of ions while the rGO conductive and physical support provides rapid electron transport. Thus, using the synergistic advantage of rGO and NiCo-MOF nanosheets an excellent specific capacitance of 1553 F g at a current density of 1 A g is obtained. Additionally, the as synthesized hybrid material showed excellent cycling capacity of 83.6% after 5000 cycles of charge-discharge. Interestingly, the assembled asymmetric device showed an excellent energy density of 44 W h kg at a power density of 3168 W kg. The electrochemical performance obtained in this report illustrates hybridization of MOF nanosheets with carbon materials is promising for next generation supercapacitors.
具有二维(2D)纳米片的金属有机框架(MOF)因其超大的表面积和高的表面与体积原子比而在超级电容器应用中受到特别关注。然而,其电化学性能因其较差的导电性而受到极大阻碍。在此,我们报道一种二维纳米片镍钴基MOF(NiCo-MOF)/还原氧化石墨烯异质结构作为超级电容器的电极材料。通过简单的室温沉淀法,在rGO表面生长出NiCo-MOF二维纳米片。在这种混合结构中,MOF超薄纳米片提供了大表面积和丰富的通道,以实现离子的快速质量传输,而rGO的导电和物理支撑则提供了快速的电子传输。因此,利用rGO和NiCo-MOF纳米片的协同优势,在电流密度为1 A g时获得了1553 F g的优异比电容。此外,所合成的混合材料在5000次充放电循环后显示出83.6%的优异循环容量。有趣的是,组装的不对称器件在功率密度为3168 W kg时显示出44 W h kg的优异能量密度。本报告中获得的电化学性能表明,MOF纳米片与碳材料的杂化对于下一代超级电容器具有广阔前景。