Suppr超能文献

早期亨廷顿病的预后富集:临床试验的可解释机器学习方法。

Prognostic enrichment for early-stage Huntington's disease: An explainable machine learning approach for clinical trial.

机构信息

Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia.

Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne VIC3000, Australia.

出版信息

Neuroimage Clin. 2024;43:103650. doi: 10.1016/j.nicl.2024.103650. Epub 2024 Aug 10.

Abstract

BACKGROUND

In Huntington's disease clinical trials, recruitment and stratification approaches primarily rely on genetic load, cognitive and motor assessment scores. They focus less on in vivo brain imaging markers, which reflect neuropathology well before clinical diagnosis. Machine learning methods offer a degree of sophistication which could significantly improve prognosis and stratification by leveraging multimodal biomarkers from large datasets. Such models specifically tailored to HD gene expansion carriers could further enhance the efficacy of the stratification process.

OBJECTIVES

To improve stratification of Huntington's disease individuals for clinical trials.

METHODS

We used data from 451 gene positive individuals with Huntington's disease (both premanifest and diagnosed) from previously published cohorts (PREDICT, TRACK, TrackON, and IMAGE). We applied whole-brain parcellation to longitudinal brain scans and measured the rate of lateral ventricular enlargement, over 3 years, which was used as the target variable for our prognostic random forest regression models. The models were trained on various combinations of features at baseline, including genetic load, cognitive and motor assessment score biomarkers, as well as brain imaging-derived features. Furthermore, a simplified stratification model was developed to classify individuals into two homogenous groups (low risk and high risk) based on their anticipated rate of ventricular enlargement.

RESULTS

The predictive accuracy of the prognostic models substantially improved by integrating brain imaging features alongside genetic load, cognitive and motor biomarkers: a 24 % reduction in the cross-validated mean absolute error, yielding an error of 530 mm/year. The stratification model had a cross-validated accuracy of 81 % in differentiating between moderate and fast progressors (precision = 83 %, recall = 80 %).

CONCLUSIONS

This study validated the effectiveness of machine learning in differentiating between low- and high-risk individuals based on the rate of ventricular enlargement. The models were exclusively trained using features from HD individuals, which offers a more disease-specific, simplified, and accurate approach for prognostic enrichment compared to relying on features extracted from healthy control groups, as done in previous studies. The proposed method has the potential to enhance clinical utility by: i) enabling more targeted recruitment of individuals for clinical trials, ii) improving post-hoc evaluation of individuals, and iii) ultimately leading to better outcomes for individuals through personalized treatment selection.

摘要

背景

在亨廷顿病临床试验中,招募和分层方法主要依赖于遗传负荷、认知和运动评估评分。它们较少关注反映神经病理学的体内脑成像标志物,这些标志物在临床诊断前很早就有反映。机器学习方法提供了一定程度的复杂性,可以通过利用来自大型数据集的多模态生物标志物来显著改善预后和分层。专门针对亨廷顿病基因扩展携带者的此类模型可以进一步提高分层过程的效果。

目的

改善亨廷顿病个体的临床试验分层。

方法

我们使用了来自以前发表的队列(PREDICT、TRACK、TrackON 和 IMAGE)的 451 名亨廷顿病基因阳性个体(既有前驱期也有确诊期)的数据。我们对纵向脑扫描进行了全脑分割,并测量了 3 年内侧脑室扩大的速度,将其作为我们预后随机森林回归模型的目标变量。模型在基线时使用了各种特征组合进行训练,包括遗传负荷、认知和运动评估评分生物标志物以及脑成像衍生特征。此外,还开发了一个简化的分层模型,根据个体预期的脑室扩大速度将其分为两个同质组(低风险和高风险)。

结果

通过整合脑成像特征以及遗传负荷、认知和运动生物标志物,预测模型的预测准确性得到了显著提高:交叉验证平均绝对误差降低了 24%,达到 530mm/年。分层模型在区分中度和快速进展者方面的交叉验证准确率为 81%(精度为 83%,召回率为 80%)。

结论

本研究验证了机器学习在基于脑室扩大速度区分低风险和高风险个体方面的有效性。模型仅使用 HD 个体的特征进行训练,与以前的研究中从健康对照组中提取特征相比,提供了一种更具疾病特异性、简化和准确的预后富集方法。所提出的方法具有增强临床实用性的潜力:i)通过更有针对性地招募临床试验个体,ii)改善个体的事后评估,以及 iii)最终通过个性化治疗选择为个体带来更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb5/11367643/10fa15160455/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验