Suppr超能文献

利用有机分析和高光谱成像技术对‘苏红颜’草莓果实进行内部品质预测。

Internal quality prediction technology for 'Sulhyang' strawberry fruit using organic analysis and hyperspectral imaging.

机构信息

Vegetable Research Division, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun 55365, Republic of Korea.

Vegetable Research Division, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun 55365, Republic of Korea; Department of Horticulture, College of Industrial Science, Kongju National University, Yesan 32439, Republic of Korea.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Dec 15;323:124912. doi: 10.1016/j.saa.2024.124912. Epub 2024 Aug 5.

Abstract

In recent years, hyperspectral imaging combined with machine learning techniques has garnered significant attention for its potential in assessing fruit maturity. This study proposes a method for predicting strawberry fruit maturity based on the harvest time. The main features of this study are as follows. 1) Selection of wavelength band associated with strawberry growth season; 2) Extraction of efficient parameters to predict strawberry maturity 3) Prediction of internal quality attributes of strawberries using extracted parameters. In this study, experts cultivated strawberries in a controlled environment and performed hyperspectral measurements and organic analyses on the fruit with minimal time delay to facilitate accurate modeling. Data augmentation techniques through cross-validation and interpolation were effective in improving model performance. The four parameters included in the model and the cumulative value of the model were available for quality prediction as additional parameters. Among these five parameter candidates, two parameters with linearity were finally identified. The predictive outcomes for firmness, soluble solids content, acidity, and anthocyanin levels in strawberry fruit, based on the two identified parameters, are as follows: The first parameter, p, demonstrated RMSE performances of 1.0 N, 2.3 %, 0.1 %, and 2.0 mg per 100 g fresh fruit for firmness, soluble solids content, acidity, and anthocyanin, respectively. The second parameter, p, showed RMSE performances of 0.6 N, 1.2 %, 0.1 %, and 1.8 mg per 100 g fresh fruit, respectively. The proposed non-destructive analysis method shows the potential to overcome the challenges associated with destructive testing methods for assessing certain internal qualities of strawberry fruit.

摘要

近年来,高光谱成像结合机器学习技术在评估水果成熟度方面具有很大的应用潜力,引起了广泛关注。本研究提出了一种基于收获时间预测草莓成熟度的方法。本研究的主要特点如下:1)选择与草莓生长季节相关的波长带;2)提取有效参数预测草莓成熟度;3)使用提取参数预测草莓的内部品质属性。本研究中,专家在受控环境中种植草莓,对果实进行高光谱测量和有机分析,时间延迟最小,以促进准确建模。通过交叉验证和插值的数据增强技术可有效提高模型性能。模型中包含的四个参数和模型的累积值可作为附加参数用于质量预测。在这五个参数候选中,最终确定了两个具有线性关系的参数。基于这两个确定的参数,对草莓果实硬度、可溶性固形物含量、酸度和花青素含量进行预测的结果如下:第一个参数 p 的 RMSE 性能分别为 1.0N、2.3%、0.1%和 2.0mg/100g 新鲜果实,用于硬度、可溶性固形物含量、酸度和花青素;第二个参数 p 的 RMSE 性能分别为 0.6N、1.2%、0.1%和 1.8mg/100g 新鲜果实。该非破坏性分析方法具有克服破坏性测试方法评估某些草莓果实内部品质的挑战的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验