Suppr超能文献

动态形成的后到前峰阿尔法频率梯度的两个不同的过程。

Dynamic Formation of a Posterior-to-Anterior Peak-Alpha-Frequency Gradient Driven by Two Distinct Processes.

机构信息

Department of Psychology, Northwestern University, Evanston, Illinois 60208.

Department of Psychology and Interdepartmental Neuroscience, Northwestern University, Evanston, Illinois 60208.

出版信息

eNeuro. 2024 Aug 29;11(8). doi: 10.1523/ENEURO.0273-24.2024. Print 2024 Aug.

Abstract

Peak-alpha frequency varies across individuals and mental states, but it also forms a negative gradient from posterior to anterior regions in association with increases in cortical thickness and connectivity, reflecting a cortical hierarchy in temporal integration. Tracking the spatial standard deviation of peak-alpha frequency in scalp EEG, we observed that a posterior-to-anterior gradient dynamically formed and dissolved. Periods of high spatial standard deviation yielded robustly negative posterior-to-anterior gradients-the "gradient state"-while periods of low spatial standard deviation yielded globally converged peak-alpha frequency-the "uniform state." The state variations were characterized by a combination of slow (0.3-0.5 Hz) oscillations and random-walk-like fluctuations. They were relatively independently correlated with peak-alpha frequency variations in anterior regions and peak-alpha power variations in central regions driven by posterior regions (together accounting for ∼50% of the state variations), suggesting that two distinct mechanisms modulate the state variations: an anterior mechanism that directly adjusts peak-alpha frequencies and a posterior-central mechanism that indirectly adjusts them by influencing synchronization. The state variations likely reflect general operations as their spatiotemporal characteristics remained unchanged while participants engaged in a variety of tasks (breath focus, vigilance, working memory, mental arithmetic, and generative thinking) with their eyes closed or watched a silent nature video. The ongoing state variations may dynamically balance two global processing modes, one that facilitates greater temporal integration (and potentially also information influx) toward anterior regions in the gradient state and the other that facilitates flexible global communication (via phase locking) in the uniform state.

摘要

峰 alpha 频率在个体和心理状态之间存在差异,但它也在后脑区域到前脑区域形成负梯度,与皮质厚度和连通性的增加有关,反映了时间整合的皮质层次结构。通过跟踪头皮 EEG 中峰 alpha 频率的空间标准差,我们观察到从后向前的梯度动态形成和溶解。高空间标准差的周期产生了稳健的负后向前梯度——“梯度状态”,而低空间标准差的周期产生了全局收敛的峰 alpha 频率——“均匀状态”。状态变化的特点是慢(0.3-0.5 Hz)振荡和随机游走样波动的组合。它们与前脑区域的峰 alpha 频率变化和后脑区域驱动的中央区域的峰 alpha 功率变化相对独立相关(共占状态变化的约 50%),这表明两种不同的机制调节了状态变化:一种是直接调节峰 alpha 频率的前脑机制,另一种是通过影响同步间接调节峰 alpha 频率的后脑-中央机制。状态变化可能反映了一般操作,因为它们的时空特征在参与者闭眼进行各种任务(呼吸专注、警觉、工作记忆、心算和生成思维)或观看无声自然视频时保持不变。持续的状态变化可能会动态平衡两种全局处理模式,一种模式在梯度状态下促进更大的时间整合(并且潜在地还促进信息流入)到前脑区域,另一种模式在均匀状态下促进灵活的全局通信(通过相位锁定)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616e/11373881/ae7e261b568f/eneuro-11-ENEURO.0273-24.2024-g001.jpg

相似文献

1
Dynamic Formation of a Posterior-to-Anterior Peak-Alpha-Frequency Gradient Driven by Two Distinct Processes.
eNeuro. 2024 Aug 29;11(8). doi: 10.1523/ENEURO.0273-24.2024. Print 2024 Aug.
2
The EEG microstate topography is predominantly determined by intracortical sources in the alpha band.
Neuroimage. 2017 Nov 15;162:353-361. doi: 10.1016/j.neuroimage.2017.08.058. Epub 2017 Aug 25.
3
Working memory processes are mediated by local and long-range synchronization of alpha oscillations.
J Cogn Neurosci. 2013 Aug;25(8):1343-57. doi: 10.1162/jocn_a_00379. Epub 2013 Mar 7.
5
Differences in the synchronization of alpha oscillations between anterior and posterior brain regions.
Neurosci Lett. 2019 Jan 18;690:171-177. doi: 10.1016/j.neulet.2018.10.034. Epub 2018 Oct 17.
7
Alpha Oscillations Reduce Temporal Long-Range Dependence in Spontaneous Human Brain Activity.
J Neurosci. 2018 Jan 17;38(3):755-764. doi: 10.1523/JNEUROSCI.0831-17.2017. Epub 2017 Nov 22.
9
Cortical sources of resting state EEG rhythms are abnormal in dyslexic children.
Clin Neurophysiol. 2012 Dec;123(12):2384-91. doi: 10.1016/j.clinph.2012.05.002. Epub 2012 Jun 1.

引用本文的文献

本文引用的文献

1
Transcranial magnetic stimulation effects support an oscillatory model of ERP genesis.
Curr Biol. 2024 Mar 11;34(5):1048-1058.e4. doi: 10.1016/j.cub.2024.01.069. Epub 2024 Feb 19.
2
A phase-shifting anterior-posterior network organizes global phase relations.
PLoS One. 2024 Feb 12;19(2):e0296827. doi: 10.1371/journal.pone.0296827. eCollection 2024.
3
Two Oscillatory Correlates of Attention Control in the Alpha-Band with Distinct Consequences on Perceptual Gain and Metacognition.
J Neurosci. 2023 May 10;43(19):3548-3556. doi: 10.1523/JNEUROSCI.1827-22.2023. Epub 2023 Apr 5.
4
Individual Alpha Frequency Determines the Impact of Bottom-Up Drive on Visual Processing.
Cereb Cortex Commun. 2021 Apr 26;2(2):tgab032. doi: 10.1093/texcom/tgab032. eCollection 2021.
5
Spatiotemporal dynamics of maximal and minimal EEG spectral power.
PLoS One. 2021 Jul 20;16(7):e0253813. doi: 10.1371/journal.pone.0253813. eCollection 2021.
6
Probabilistic, entropy-maximizing control of large-scale neural synchronization.
PLoS One. 2021 Apr 30;16(4):e0249317. doi: 10.1371/journal.pone.0249317. eCollection 2021.
7
Parameterizing neural power spectra into periodic and aperiodic components.
Nat Neurosci. 2020 Dec;23(12):1655-1665. doi: 10.1038/s41593-020-00744-x. Epub 2020 Nov 23.
9
Alpha oscillations and traveling waves: Signatures of predictive coding?
PLoS Biol. 2019 Oct 3;17(10):e3000487. doi: 10.1371/journal.pbio.3000487. eCollection 2019 Oct.
10
Large-Scale Communication in the Human Brain Is Rhythmically Modulated through Alpha Coherence.
Curr Biol. 2019 Sep 9;29(17):2801-2811.e5. doi: 10.1016/j.cub.2019.07.014. Epub 2019 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验