Suppr超能文献

用于……的多角度量子近似优化算法的性能分析 (你提供的原文不完整,这里的译文根据现有内容尽量准确翻译)

Performance analysis of multi-angle QAOA for .

作者信息

Gaidai Igor, Herrman Rebekah

机构信息

Department of Industrial and Systems Engineering, University of Tennessee at Knoxville, 37996, Knoxville, TN, USA.

出版信息

Sci Rep. 2024 Aug 14;14(1):18911. doi: 10.1038/s41598-024-69643-6.

Abstract

In this paper we consider the scalability of multi-angle QAOA with respect to the number of QAOA layers. We found that MA-QAOA is able to significantly reduce the depth of QAOA circuits, by a factor of up to 4 for the considered data sets. Moreover, MA-QAOA is less sensitive to system size, therefore we predict that this factor will be even larger for big graphs. However, MA-QAOA was found to be not optimal for minimization of the total QPU time. Different optimization initialization strategies are considered and compared for both QAOA and MA-QAOA. Among them, a new initialization strategy is suggested for MA-QAOA that is able to consistently and significantly outperform random initialization used in the previous studies.

摘要

在本文中,我们考虑了多角度量子近似优化算法(QAOA)相对于QAOA层数的可扩展性。我们发现,对于所考虑的数据集,多角度QAOA(MA-QAOA)能够显著减少QAOA电路的深度,最多可减少四倍。此外,MA-QAOA对系统规模不太敏感,因此我们预测对于大型图,这个因子会更大。然而,发现MA-QAOA在最小化总量子处理单元(QPU)时间方面并非最优。针对QAOA和MA-QAOA,考虑并比较了不同的优化初始化策略。其中,为MA-QAOA提出了一种新的初始化策略,该策略能够始终如一地显著优于先前研究中使用的随机初始化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5e0/11324650/546fd1d0f14a/41598_2024_69643_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验