Gaidai Igor, Herrman Rebekah
Department of Industrial and Systems Engineering, University of Tennessee at Knoxville, 37996, Knoxville, TN, USA.
Sci Rep. 2024 Aug 14;14(1):18911. doi: 10.1038/s41598-024-69643-6.
In this paper we consider the scalability of multi-angle QAOA with respect to the number of QAOA layers. We found that MA-QAOA is able to significantly reduce the depth of QAOA circuits, by a factor of up to 4 for the considered data sets. Moreover, MA-QAOA is less sensitive to system size, therefore we predict that this factor will be even larger for big graphs. However, MA-QAOA was found to be not optimal for minimization of the total QPU time. Different optimization initialization strategies are considered and compared for both QAOA and MA-QAOA. Among them, a new initialization strategy is suggested for MA-QAOA that is able to consistently and significantly outperform random initialization used in the previous studies.
在本文中,我们考虑了多角度量子近似优化算法(QAOA)相对于QAOA层数的可扩展性。我们发现,对于所考虑的数据集,多角度QAOA(MA-QAOA)能够显著减少QAOA电路的深度,最多可减少四倍。此外,MA-QAOA对系统规模不太敏感,因此我们预测对于大型图,这个因子会更大。然而,发现MA-QAOA在最小化总量子处理单元(QPU)时间方面并非最优。针对QAOA和MA-QAOA,考虑并比较了不同的优化初始化策略。其中,为MA-QAOA提出了一种新的初始化策略,该策略能够始终如一地显著优于先前研究中使用的随机初始化。