Herrman Rebekah, Lotshaw Phillip C, Ostrowski James, Humble Travis S, Siopsis George
Department of Industrial and Systems Engineering, University of Tennessee at Knoxville, Knoxville, TN, 37996, USA.
Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Sci Rep. 2022 Apr 26;12(1):6781. doi: 10.1038/s41598-022-10555-8.
The quantum approximate optimization algorithm (QAOA) generates an approximate solution to combinatorial optimization problems using a variational ansatz circuit defined by parameterized layers of quantum evolution. In theory, the approximation improves with increasing ansatz depth but gate noise and circuit complexity undermine performance in practice. Here, we investigate a multi-angle ansatz for QAOA that reduces circuit depth and improves the approximation ratio by increasing the number of classical parameters. Even though the number of parameters increases, our results indicate that good parameters can be found in polynomial time for a test dataset we consider. This new ansatz gives a 33% increase in the approximation ratio for an infinite family of MaxCut instances over QAOA. The optimal performance is lower bounded by the conventional ansatz, and we present empirical results for graphs on eight vertices that one layer of the multi-angle anstaz is comparable to three layers of the traditional ansatz on MaxCut problems. Similarly, multi-angle QAOA yields a higher approximation ratio than QAOA at the same depth on a collection of MaxCut instances on fifty and one-hundred vertex graphs. Many of the optimized parameters are found to be zero, so their associated gates can be removed from the circuit, further decreasing the circuit depth. These results indicate that multi-angle QAOA requires shallower circuits to solve problems than QAOA, making it more viable for near-term intermediate-scale quantum devices.
量子近似优化算法(QAOA)使用由量子演化的参数化层定义的变分近似电路来生成组合优化问题的近似解。理论上,随着近似深度的增加,近似效果会得到改善,但在实际中,门噪声和电路复杂度会影响性能。在这里,我们研究了一种用于QAOA的多角度近似,它通过增加经典参数的数量来减少电路深度并提高近似比率。尽管参数数量增加了,但我们的结果表明,对于我们考虑的测试数据集,可以在多项式时间内找到良好的参数。对于无穷多个最大割实例族,这种新的近似比QAOA的近似比率提高了33%。最优性能以传统近似为下限,并且我们给出了关于八个顶点的图的实证结果,即对于最大割问题,一层多角度近似与三层传统近似相当。同样,在五十和一百个顶点的图上的最大割实例集合中,多角度QAOA在相同深度下比QAOA产生更高的近似比率。发现许多优化后的参数为零,因此可以从电路中移除与其相关的门,进一步减小电路深度。这些结果表明,与QAOA相比,多角度QAOA解决问题所需的电路更浅,这使其对于近期的中规模量子设备更可行。