Suppr超能文献

氢键的动态到静态转变在有机-无机超晶格中诱导金属-绝缘体转变。

Dynamic-to-static switch of hydrogen bonds induces a metal-insulator transition in an organic-inorganic superlattice.

作者信息

Xie Zhenkai, Luo Rui, Ying Tianping, Gao Yurui, Song Boqin, Yu Tongxu, Chen Xu, Hao Munan, Chai Congcong, Yan Jiashu, Huang Zhiheng, Chen Zhiguo, Du Luojun, Zhu Chongqin, Guo Jiangang, Chen Xiaolong

机构信息

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Chem. 2024 Nov;16(11):1803-1810. doi: 10.1038/s41557-024-01566-1. Epub 2024 Aug 14.

Abstract

Hydrogen bonds profoundly influence the fundamental chemical, physical and biological properties of molecules and materials. Owing to their relatively weaker interactions compared to other chemical bonds, hydrogen bonds alone are generally insufficient to induce substantial changes in electrical properties, thus imposing severe constraints on their applications in related devices. Here we report a metal-insulator transition controlled by hydrogen bonds for an organic-inorganic (1,3-diaminopropane)SnSe superlattice that exhibits a colossal on-off ratio of 10 in electrical resistivity. The key to inducing the transition is a change in the amino group's hydrogen-bonding structure from dynamic to static. In the dynamic state, thermally activated free rotation continuously breaks and forms transient hydrogen bonds with adjacent Se anions. In the static state, the amino group forms three fixed-angle positions, each separated by 120°. Our findings contribute to the understanding of electrical phenomena in organic-inorganic hybrid materials and may be used for the design of future molecule-based electronic materials.

摘要

氢键对分子和材料的基本化学、物理及生物学性质有着深远影响。由于与其他化学键相比,氢键的相互作用相对较弱,仅靠氢键通常不足以引起电学性质的显著变化,因此对其在相关器件中的应用造成了严重限制。在此,我们报道了一种由氢键控制的金属-绝缘体转变,该转变发生在有机-无机(1,3-二氨基丙烷)SnSe超晶格中,其电阻率呈现出高达10的巨大开-关比。引发这种转变的关键在于氨基氢键结构从动态变为静态。在动态状态下,热激活的自由旋转不断地与相邻的硒阴离子断开并形成瞬态氢键。在静态状态下,氨基形成三个固定角度的位置,每个位置相隔120°。我们的研究结果有助于理解有机-无机杂化材料中的电学现象,并可能用于未来基于分子的电子材料设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验