Lv Hui-Peng, Ai Yong, Hu Wei, Xiong Yuqin Susan, Weng Yan-Ran, Song Xian-Jiang, Qin Yan, Liao Wei-Qiang, Xiong Ren-Gen
Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
JACS Au. 2025 Jul 29;5(8):4086-4093. doi: 10.1021/jacsau.5c00739. eCollection 2025 Aug 25.
Molecule intercalation has shown distinct advantages in modulating the superconducting properties of 2D materials. Chiral molecule intercalation provides a strategy for tuning electronic properties, while this approach has been limited to a few 2D materials such as TaS and TiS. Although extensive research on 2D SnSe exists, chiral molecule intercalation in SnSe remains unexplored. Herein, we report the first successful electrochemical intercalation of chiral CTA cations (CTA = 3-chloro-2-hydroxypropyltrimethylammonium) into SnSe by using piezoelectric /-CTA-Cl with a large piezoelectric coefficient of approximately 24 pm/V as the precursors, leading to the formation of superconductors /CTA-SnSe. Characterization techniques, including powder X-ray diffraction, Raman spectroscopy, and circular dichroism spectroscopy, confirm a significant lattice expansion in SnSe and the successful intercalation of chiral CTA cations, while polar /-CTA-Cl does not endow /-CTA-SnSe with piezoelectric/ferroelectric properties. Magnetic susceptibility and electrical transport measurements reveal that the intercalated /-CTA-SnSe materials exhibit a superconducting transition at around 5 K. Notably, the distinct out-of-plane and in-plane upper critical magnetic fields demonstrate the 2D nature of the intercalated compounds. This work highlights an approach for designing and tailoring superconducting materials through chiral cation intercalation and opens avenues for further exploration of chiral effects in superconductors.
分子插层在调控二维材料的超导性能方面展现出显著优势。手性分子插层为调节电子性质提供了一种策略,然而这种方法仅限于少数二维材料,如TaS和TiS。尽管对二维SnSe已有广泛研究,但SnSe中的手性分子插层仍未被探索。在此,我们报道了首次成功地通过使用具有约24 pm/V的大压电系数的压电/-CTA-Cl作为前驱体,将手性CTA阳离子(CTA = 3-氯-2-羟丙基三甲基铵)电化学插层到SnSe中,从而形成超导体/-CTA-SnSe。包括粉末X射线衍射、拉曼光谱和圆二色光谱在内的表征技术证实了SnSe中晶格的显著膨胀以及手性CTA阳离子的成功插层,而极性/-CTA-Cl并未赋予/-CTA-SnSe压电/铁电性质。磁化率和电输运测量表明,插层后的/-CTA-SnSe材料在约5 K时表现出超导转变。值得注意的是,明显的面外和面内上临界磁场证明了插层化合物的二维性质。这项工作突出了一种通过手性阳离子插层来设计和定制超导材料的方法,并为进一步探索超导体中的手性效应开辟了途径。