Suppr超能文献

由于氢键网络的温度诱导重组,微生物细胞色素纳米线的电导率增加了300倍。

A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks.

作者信息

Dahl Peter J, Yi Sophia M, Gu Yangqi, Acharya Atanu, Shipps Catharine, Neu Jens, O'Brien J Patrick, Morzan Uriel N, Chaudhuri Subhajyoti, Guberman-Pfeffer Matthew J, Vu Dennis, Yalcin Sibel Ebru, Batista Victor S, Malvankar Nikhil S

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.

Microbial Sciences Institute, Yale University, New Haven, CT, USA.

出版信息

Sci Adv. 2022 May 13;8(19):eabm7193. doi: 10.1126/sciadv.abm7193. Epub 2022 May 11.

Abstract

Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>10 s) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.

摘要

尽管蛋白质被认为是仅通过隧穿将电子传输至多1至2纳米的非导体,但它通过由聚合细胞色素OmcS组成的纳米线,将呼吸电子传输数微米至不溶性受体或互营伙伴细胞。然而,实现这种长距离传导的机制尚不清楚。在这里,我们证明单个纳米线表现出理论预测的跳跃电导,其速率(>10 s)与合成分子线相当,在数微米范围内的载流子损失可忽略不计。出乎意料的是,纳米线在冷却时其固有电导增加了300倍,而在氘化时这种增加消失。计算表明,冷却会导致纳米线中氢键网络的大量重排。拉曼光谱和模拟显示,冷却使血红素更平面化,并降低其还原电位。我们发现血红素周围的蛋白质充当温度敏感开关,通过感知环境扰动来控制电荷传输。对血红素环境进行合理工程设计可以实现对细胞外呼吸的系统调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f3/9094664/730d6aac618e/sciadv.abm7193-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验