College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
Analyst. 2024 Sep 23;149(19):4881-4888. doi: 10.1039/d4an00950a.
Strategies based on nanomaterials for sterilization address the problem of antibiotic resistance faced by conventional antimicrobials, with the contribution of photocatalytic compounds being particularly prominent. Herein, to integrate multiple bactericidal techniques into a system for generating synergistic antibacterial effects, a novel photo-triggered AuAg@g-CN composite nanoplatform was constructed by anchoring AuAg on the surface of a g-CN layer. As the composite nanoplatform had a lower bandgap and superior visible light utilization efficiency, it could facilitate free electron transfer better and exhibit superior photocatalytic activity under light conditions. Moreover, the AuAg@g-CN composite nanoplatform integrated the bactericidal modes of silver ion toxicity, physical disruption of bacterial cell membranes by the multilayer structure, and excellent photocatalytic activity, exhibiting extremely superior bactericidal effects against , , and , with a bactericidal efficiency of up to 100%.
基于纳米材料的杀菌策略解决了传统抗菌剂面临的抗生素耐药性问题,其中光催化化合物的贡献尤为突出。在此,为了将多种杀菌技术集成到一个产生协同抗菌效果的系统中,通过在 g-CN 层表面锚定 AuAg,构建了一种新型的光触发 AuAg@g-CN 复合纳米平台。由于复合纳米平台具有更低的带隙和更高的可见光利用效率,它可以更好地促进自由电子转移,并在光照条件下表现出优越的光催化活性。此外,AuAg@g-CN 复合纳米平台整合了银离子毒性、多层结构对细菌细胞膜的物理破坏以及优异的光催化活性等杀菌模式,对 、 、 、 和 表现出极其优异的杀菌效果,杀菌效率高达 100%。