Suppr超能文献

基于机器学习的非体外循环冠状动脉旁路移植术相关急性肾损伤预测

Machine learning-based prediction of off-pump coronary artery bypass grafting-associated acute kidney injury.

作者信息

Song Yuezi, Zhai Wenqian, Ma Songnan, Wu Yubo, Ren Min, Van den Eynde Jef, Nardi Paolo, Pang Philip Y K, Ali Jason M, Han Jiange, Guo Zhigang

机构信息

Department of Anesthesiology, Chest Hospital, Tianjin University, Tianjin, China.

Tianjin Key Laboratory of Cardiovascular Emergencies and Critical Care, Tianjin, China.

出版信息

J Thorac Dis. 2024 Jul 30;16(7):4535-4542. doi: 10.21037/jtd-24-711. Epub 2024 Jul 22.

Abstract

BACKGROUND

The cardiac surgery-associated acute kidney injury (CSA-AKI) occurs in up to 1 out of 3 patients. Off-pump coronary artery bypass grafting (OPCABG) is one of the major cardiac surgeries leading to CSA-AKI. Early identification and timely intervention are of clinical significance for CSA-AKI. In this study, we aimed to establish a prediction model of off-pump coronary artery bypass grafting-associated acute kidney injury (OPCABG-AKI) after surgery based on machine learning methods.

METHODS

The preoperative and intraoperative data of 1,041 patients who underwent OPCABG in Chest Hospital, Tianjin University from June 1, 2021 to April 30, 2023 were retrospectively collected. The definition of OPCABG-AKI was based on the 2012 Kidney Disease Improving Global Outcomes (KDIGO) criteria. The baseline data and intraoperative time series data were included in the dataset, which were preprocessed separately. A total of eight machine learning models were constructed based on the baseline data: logistic regression (LR), gradient-boosting decision tree (GBDT), eXtreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and decision tree (DT). The intraoperative time series data were extracted using a long short-term memory (LSTM) deep learning model. The baseline data and intraoperative features were then integrated through transfer learning and fused into each of the eight machine learning models for training. Based on the calculation of accuracy and area under the curve (AUC) of the prediction model, the best model was selected to establish the final OPCABG-AKI risk prediction model. The importance of features was calculated and ranked by DT model, to identify the main risk factors.

RESULTS

Among 701 patients included in the study, 73 patients (10.4%) developed OPCABG-AKI. The GBDT model was shown to have the best predictions, both based on baseline data only (AUC =0.739, accuracy: 0.943) as well as based on baseline and intraoperative datasets (AUC =0.861, accuracy: 0.936). The ranking of importance of features of the GBDT model showed that use of insulin aspart was the most important predictor of OPCABG-AKI, followed by use of acarbose, spironolactone, alfentanil, dezocine, levosimendan, clindamycin, history of myocardial infarction, and gender.

CONCLUSIONS

A GBDT-based model showed excellent performance for the prediction of OPCABG-AKI. The fusion of preoperative and intraoperative data can improve the accuracy of predicting OPCABG-AKI.

摘要

背景

心脏手术相关急性肾损伤(CSA-AKI)在高达三分之一的患者中发生。非体外循环冠状动脉旁路移植术(OPCABG)是导致CSA-AKI的主要心脏手术之一。早期识别和及时干预对CSA-AKI具有临床意义。在本研究中,我们旨在基于机器学习方法建立术后非体外循环冠状动脉旁路移植术相关急性肾损伤(OPCABG-AKI)的预测模型。

方法

回顾性收集2021年6月1日至2023年4月30日在天津大学胸科医院接受OPCABG的1041例患者的术前和术中数据。OPCABG-AKI的定义基于2012年改善全球肾脏病预后组织(KDIGO)标准。基线数据和术中时间序列数据被纳入数据集,并分别进行预处理。基于基线数据构建了总共八个机器学习模型:逻辑回归(LR)、梯度提升决策树(GBDT)、极端梯度提升(XGBoost)、自适应提升(AdaBoost)、随机森林(RF)、支持向量机(SVM)、k近邻(KNN)和决策树(DT)。术中时间序列数据使用长短期记忆(LSTM)深度学习模型提取。然后通过迁移学习将基线数据和术中特征整合,并融合到八个机器学习模型中的每一个进行训练。基于预测模型的准确性和曲线下面积(AUC)计算,选择最佳模型建立最终的OPCABG-AKI风险预测模型。通过DT模型计算并排列特征的重要性,以识别主要危险因素。

结果

在纳入研究的701例患者中,73例(10.4%)发生了OPCABG-AKI。结果显示,GBDT模型具有最佳预测效果,仅基于基线数据时(AUC =0.739,准确性:0.943)以及基于基线和术中数据集时(AUC =0.861,准确性:0.936)均如此。GBDT模型特征重要性排名显示,门冬胰岛素的使用是OPCABG-AKI最重要的预测因素,其次是阿卡波糖、螺内酯、阿芬太尼、地佐辛、左西孟旦、克林霉素、心肌梗死病史和性别。

结论

基于GBDT的模型在预测OPCABG-AKI方面表现出色。术前和术中数据的融合可提高OPCABG-AKI预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c68/11320255/4d03732f4b70/jtd-16-07-4535-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验