Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China.
Adv Clin Exp Med. 2024 May;33(5):473-481. doi: 10.17219/acem/169609.
Off-pump coronary artery bypass grafting-associated acute kidney injury (OPCAB-AKI) is related to 30-day perioperative mortality. Existing mathematical models cannot be applied to help clinicians make early diagnosis and intervention decisions.
This study used an interpretable machine learning method to establish and screen an optimized OPCAB-AKI prediction model.
Clinical data of 1110 patients who underwent OPCAB in the Department of Cardiac Surgery of General Hospital of Northern Theater Command (Shenyang, China) from January 2018 to December 2020 were collected retrospectively. Four machine learning models were used, including logistic regression (LR), decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGBoost). The SHapley Additive exPlanation (SHAP) tool was used for explanatory analysis of the black-box model. The mean absolute value of the characteristic SHAP parameter was defined and sorted. The correlation between the characteristic parameters and OPCAB-AKI was determined based on the SHAP value. A quantitative analysis of a single characteristic and an interaction analysis of multiple characteristics were carried out for the main risk factors.
The RF prediction model had the best performance, with an area under the curve (AUC) of 0.90, a precision rate of 0.80, an accuracy rate of 0.83, a recall rate of 0.74, and an F1 score of 0.78 for positive samples. The interpretation analysis of the SHAP model results showed that intraoperative urine volume contributed to the greatest extent to the RF model, and other parameters included intraoperative sufentanil dosage, intraoperative dexmedetomidine dosage, cyclic variation coefficient during the induction period, intraoperative hypotension duration, age, preoperative baseline serum creatinine, body mass index (BMI), and Acute Physiology, Age and Chronic Health Evaluation (APACHE) II score.
The model constructed by the RF ensemble learning algorithm predicted OPCAB-AKI, and indicators such as intraoperative urine volume were closely related to OPCAB-AKI.
非体外循环冠状动脉旁路移植术相关的急性肾损伤(OPCAB-AKI)与 30 天围手术期死亡率有关。现有的数学模型无法应用于帮助临床医生做出早期诊断和干预决策。
本研究使用可解释的机器学习方法建立和筛选优化的 OPCAB-AKI 预测模型。
回顾性收集 2018 年 1 月至 2020 年 12 月北部战区总医院心脏外科接受 OPCAB 的 1110 例患者的临床数据。使用了四种机器学习模型,包括逻辑回归(LR)、决策树(DT)、随机森林(RF)和极端梯度提升(XGBoost)。使用 Shapley 可加性解释(SHAP)工具对黑盒模型进行解释性分析。定义并排序特征 SHAP 参数的绝对值。根据 SHAP 值确定特征参数与 OPCAB-AKI 的相关性。对主要风险因素进行单一特征的定量分析和多个特征的交互分析。
RF 预测模型表现最佳,曲线下面积(AUC)为 0.90,准确率为 0.80,准确度为 0.83,召回率为 0.74,阳性样本的 F1 得分为 0.78。SHAP 模型结果的解释分析表明,术中尿量对 RF 模型的贡献最大,其他参数包括术中舒芬太尼剂量、术中右美托咪定剂量、诱导期循环变异系数、术中低血压持续时间、年龄、术前基线血清肌酐、体重指数(BMI)和急性生理学、年龄和慢性健康评估(APACHE)II 评分。
RF 集成学习算法构建的模型预测 OPCAB-AKI,术中尿量等指标与 OPCAB-AKI 密切相关。