Hou Xuejian, Zhang Kui, Liu Taoshuai, Xu Shijun, Zheng Jubing, Li Yang, Dong Ran
Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 100000 Beijing, China.
Rev Cardiovasc Med. 2024 Jan 29;25(2):43. doi: 10.31083/j.rcm2502043. eCollection 2024 Feb.
The incidence of postoperative acute kidney injury (AKI) is high due to insufficient perfusion in patients with heart failure. Heart failure patients with preserved ejection fraction (HFpEF) have strong heterogeneity, which can obtain more accurate results. There are few studies for predicting AKI after coronary artery bypass grafting (CABG) in HFpEF patients especially using machine learning methodology.
Patients were recruited in this study from 2018 to 2022. AKI was defined according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. The machine learning methods adopted included logistic regression, random forest (RF), extreme gradient boosting (XGBoost), gaussian naive bayes (GNB), and light gradient boosting machine (LGBM). We used the receiver operating characteristic curve (ROC) to evaluate the performance of these models. The integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were utilized to compare the prediction model.
In our study, 417 (23.6%) patients developed AKI. Among the five models, random forest was the best predictor of AKI. The area under curve (AUC) value was 0.834 (95% confidence interval (CI) 0.80-0.86). The IDI and NRI was also better than the other models. Ejection fraction (EF), estimated glomerular filtration rate (eGFR), age, albumin (Alb), uric acid (UA), lactate dehydrogenase (LDH) were also significant risk factors in the random forest model.
EF, eGFR, age, Alb, UA, LDH are independent risk factors for AKI in HFpEF patients after CABG using the random forest model. EF, eGFR, and Alb positively correlated with age; UA and LDH had a negative correlation. The application of machine learning can better predict the occurrence of AKI after CABG and may help to improve the prognosis of HFpEF patients.
由于心力衰竭患者灌注不足,术后急性肾损伤(AKI)的发生率较高。射血分数保留的心力衰竭(HFpEF)患者具有很强的异质性,这可能会获得更准确的结果。关于HFpEF患者冠状动脉旁路移植术(CABG)后预测AKI的研究很少,尤其是使用机器学习方法的研究。
本研究于2018年至2022年招募患者。根据改善全球肾脏病预后组织(KDIGO)标准定义AKI。采用的机器学习方法包括逻辑回归、随机森林(RF)、极端梯度提升(XGBoost)、高斯朴素贝叶斯(GNB)和轻梯度提升机(LGBM)。我们使用受试者工作特征曲线(ROC)来评估这些模型的性能。采用综合判别改善(IDI)和净重新分类改善(NRI)来比较预测模型。
在我们的研究中,417例(23.6%)患者发生了AKI。在这五个模型中,随机森林是AKI的最佳预测因子。曲线下面积(AUC)值为0.834(95%置信区间(CI)0.80 - 0.86)。IDI和NRI也优于其他模型。射血分数(EF)、估计肾小球滤过率(eGFR)、年龄、白蛋白(Alb)、尿酸(UA)、乳酸脱氢酶(LDH)在随机森林模型中也是显著的危险因素。
使用随机森林模型,EF、eGFR、年龄、Alb、UA、LDH是HFpEF患者CABG术后发生AKI的独立危险因素。EF、eGFR和Alb与年龄呈正相关;UA和LDH呈负相关。机器学习的应用可以更好地预测CABG术后AKI的发生,并可能有助于改善HFpEF患者的预后。