Suppr超能文献

乌干达统一口蹄疫数据集:评估不同分布下机器学习预测性能的退化情况。

A unified Foot and Mouth Disease dataset for Uganda: evaluating machine learning predictive performance degradation under varying distributions.

作者信息

Kapalaga Geofrey, Kivunike Florence N, Kerfua Susan, Jjingo Daudi, Biryomumaisho Savino, Rutaisire Justus, Ssajjakambwe Paul, Mugerwa Swidiq, Kiwala Yusuf

机构信息

Department of Information Technology, College of Computing and Information Sciences, Makerere University, Kampala, Uganda.

National Livestock Resources Research Institute, Kampala, Uganda.

出版信息

Front Artif Intell. 2024 Jul 31;7:1446368. doi: 10.3389/frai.2024.1446368. eCollection 2024.

Abstract

In Uganda, the absence of a unified dataset for constructing machine learning models to predict Foot and Mouth Disease outbreaks hinders preparedness. Although machine learning models exhibit excellent predictive performance for Foot and Mouth Disease outbreaks under stationary conditions, they are susceptible to performance degradation in non-stationary environments. Rainfall and temperature are key factors influencing these outbreaks, and their variability due to climate change can significantly impact predictive performance. This study created a unified Foot and Mouth Disease dataset by integrating disparate sources and pre-processing data using mean imputation, duplicate removal, visualization, and merging techniques. To evaluate performance degradation, seven machine learning models were trained and assessed using metrics including accuracy, area under the receiver operating characteristic curve, recall, precision and F1-score. The dataset showed a significant class imbalance with more non-outbreaks than outbreaks, requiring data augmentation methods. Variability in rainfall and temperature impacted predictive performance, causing notable degradation. Random Forest with borderline SMOTE was the top-performing model in a stationary environment, achieving 92% accuracy, 0.97 area under the receiver operating characteristic curve, 0.94 recall, 0.90 precision, and 0.92 F1-score. However, under varying distributions, all models exhibited significant performance degradation, with random forest accuracy dropping to 46%, area under the receiver operating characteristic curve to 0.58, recall to 0.03, precision to 0.24, and F1-score to 0.06. This study underscores the creation of a unified Foot and Mouth Disease dataset for Uganda and reveals significant performance degradation in seven machine learning models under varying distributions. These findings highlight the need for new methods to address the impact of distribution variability on predictive performance.

摘要

在乌干达,缺乏用于构建预测口蹄疫疫情的机器学习模型的统一数据集阻碍了疫情防范工作。尽管机器学习模型在稳定条件下对口蹄疫疫情表现出出色的预测性能,但在非稳定环境中它们容易出现性能下降。降雨和温度是影响这些疫情爆发的关键因素,而气候变化导致的它们的变化会显著影响预测性能。本研究通过整合不同来源的数据并使用均值插补、重复数据删除、可视化和合并技术对数据进行预处理,创建了一个统一的口蹄疫数据集。为了评估性能下降情况,训练并评估了七个机器学习模型,使用的指标包括准确率、接收器操作特征曲线下的面积、召回率、精确率和F1分数。该数据集显示出明显的类别不平衡,非疫情情况比疫情情况更多,这需要数据增强方法。降雨和温度的变化影响了预测性能,导致显著下降。在稳定环境中,带有边界合成少数类过采样技术(borderline SMOTE)的随机森林是表现最佳的模型,准确率达到92%,接收器操作特征曲线下的面积为0.97,召回率为0.94,精确率为0.90,F1分数为0.92。然而,在不同分布情况下,所有模型都表现出显著的性能下降,随机森林的准确率降至46%,接收器操作特征曲线下的面积降至0.58,召回率降至0.03,精确率降至0.24,F1分数降至0.06。本研究强调了为乌干达创建统一的口蹄疫数据集的重要性,并揭示了七个机器学习模型在不同分布情况下的显著性能下降。这些发现凸显了需要新方法来应对分布变化对预测性能的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c53/11322090/4cdac8365c59/frai-07-1446368-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验