Department of Computer Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan.
Department of Software Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan.
Sensors (Basel). 2022 Jul 13;22(14):5247. doi: 10.3390/s22145247.
Diabetes is a long-lasting disease triggered by expanded sugar levels in human blood and can affect various organs if left untreated. It contributes to heart disease, kidney issues, damaged nerves, damaged blood vessels, and blindness. Timely disease prediction can save precious lives and enable healthcare advisors to take care of the conditions. Most diabetic patients know little about the risk factors they face before diagnosis. Nowadays, hospitals deploy basic information systems, which generate vast amounts of data that cannot be converted into proper/useful information and cannot be used to support decision making for clinical purposes. There are different automated techniques available for the earlier prediction of disease. Ensemble learning is a data analysis technique that combines multiple techniques into a single optimal predictive system to evaluate bias and variation, and to improve predictions. Diabetes data, which included 17 variables, were gathered from the UCI repository of various datasets. The predictive models used in this study include AdaBoost, Bagging, and Random Forest, to compare the precision, recall, classification accuracy, and F1-score. Finally, the Random Forest Ensemble Method had the best accuracy (97%), whereas the AdaBoost and Bagging algorithms had lower accuracy, precision, recall, and F1-scores.
糖尿病是一种由人体血液中糖分含量过高引起的慢性疾病,如果不加以治疗,可能会影响到身体的各个器官。糖尿病会导致心脏病、肾脏问题、神经损伤、血管损伤和失明。及时的疾病预测可以挽救宝贵的生命,并使医疗顾问能够照顾好患者的病情。大多数糖尿病患者在诊断前对自己面临的风险因素知之甚少。如今,医院部署了基本的信息系统,这些系统生成了大量的数据,但这些数据无法转化为适当/有用的信息,也无法用于支持临床决策。目前有多种自动化技术可用于疾病的早期预测。集成学习是一种数据分析技术,它将多种技术组合成一个单一的最佳预测系统,以评估偏差和变化,并提高预测的准确性。本研究中使用的糖尿病数据集包含 17 个变量,这些数据来自 UCI 不同数据集的存储库。在本研究中使用的预测模型包括 AdaBoost、Bagging 和随机森林,以比较精度、召回率、分类准确性和 F1 分数。最后,随机森林集成方法的准确性最高(97%),而 AdaBoost 和 Bagging 算法的准确性、精度、召回率和 F1 分数较低。
Sensors (Basel). 2022-7-13
BMC Bioinformatics. 2023-9-12
Front Public Health. 2021
J Med Syst. 2017-11-9
BMC Cardiovasc Disord. 2024-4-18
Med Biol Eng Comput. 2023-3
Appl Biochem Biotechnol. 2019-7-27
Comput Methods Programs Biomed. 2019-6-11
J Diabetes Metab Disord. 2025-6-17
BMC Anesthesiol. 2024-12-18
BMC Med Inform Decis Mak. 2024-12-18
BMC Med Res Methodol. 2024-9-27
Front Med (Lausanne). 2024-8-7
PeerJ Comput Sci. 2024-3-29
Diagnostics (Basel). 2023-7-27
Comput Intell Neurosci. 2022
Sensors (Basel). 2021-12-29
Prim Care Diabetes. 2021-6
Health Inf Sci Syst. 2020-1-3
J Diabetes Res. 2017