文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的早期糖尿病风险预测的集成方法:一项实证研究。

An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study.

机构信息

Department of Computer Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan.

Department of Software Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan.

出版信息

Sensors (Basel). 2022 Jul 13;22(14):5247. doi: 10.3390/s22145247.


DOI:10.3390/s22145247
PMID:35890927
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9324493/
Abstract

Diabetes is a long-lasting disease triggered by expanded sugar levels in human blood and can affect various organs if left untreated. It contributes to heart disease, kidney issues, damaged nerves, damaged blood vessels, and blindness. Timely disease prediction can save precious lives and enable healthcare advisors to take care of the conditions. Most diabetic patients know little about the risk factors they face before diagnosis. Nowadays, hospitals deploy basic information systems, which generate vast amounts of data that cannot be converted into proper/useful information and cannot be used to support decision making for clinical purposes. There are different automated techniques available for the earlier prediction of disease. Ensemble learning is a data analysis technique that combines multiple techniques into a single optimal predictive system to evaluate bias and variation, and to improve predictions. Diabetes data, which included 17 variables, were gathered from the UCI repository of various datasets. The predictive models used in this study include AdaBoost, Bagging, and Random Forest, to compare the precision, recall, classification accuracy, and F1-score. Finally, the Random Forest Ensemble Method had the best accuracy (97%), whereas the AdaBoost and Bagging algorithms had lower accuracy, precision, recall, and F1-scores.

摘要

糖尿病是一种由人体血液中糖分含量过高引起的慢性疾病,如果不加以治疗,可能会影响到身体的各个器官。糖尿病会导致心脏病、肾脏问题、神经损伤、血管损伤和失明。及时的疾病预测可以挽救宝贵的生命,并使医疗顾问能够照顾好患者的病情。大多数糖尿病患者在诊断前对自己面临的风险因素知之甚少。如今,医院部署了基本的信息系统,这些系统生成了大量的数据,但这些数据无法转化为适当/有用的信息,也无法用于支持临床决策。目前有多种自动化技术可用于疾病的早期预测。集成学习是一种数据分析技术,它将多种技术组合成一个单一的最佳预测系统,以评估偏差和变化,并提高预测的准确性。本研究中使用的糖尿病数据集包含 17 个变量,这些数据来自 UCI 不同数据集的存储库。在本研究中使用的预测模型包括 AdaBoost、Bagging 和随机森林,以比较精度、召回率、分类准确性和 F1 分数。最后,随机森林集成方法的准确性最高(97%),而 AdaBoost 和 Bagging 算法的准确性、精度、召回率和 F1 分数较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/bc52c1f13c2e/sensors-22-05247-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/81ed0c48206b/sensors-22-05247-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/7abf48886353/sensors-22-05247-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/78dfddf2728c/sensors-22-05247-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/1d0120db0a2c/sensors-22-05247-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/6675809ba02b/sensors-22-05247-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/7ea19c12cb65/sensors-22-05247-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/50aa11180141/sensors-22-05247-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/5637f9b70a3a/sensors-22-05247-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/32ccdb2a3c84/sensors-22-05247-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/17070357afd4/sensors-22-05247-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/34e64d293ca9/sensors-22-05247-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/bc52c1f13c2e/sensors-22-05247-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/81ed0c48206b/sensors-22-05247-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/7abf48886353/sensors-22-05247-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/78dfddf2728c/sensors-22-05247-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/1d0120db0a2c/sensors-22-05247-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/6675809ba02b/sensors-22-05247-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/7ea19c12cb65/sensors-22-05247-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/50aa11180141/sensors-22-05247-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/5637f9b70a3a/sensors-22-05247-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/32ccdb2a3c84/sensors-22-05247-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/17070357afd4/sensors-22-05247-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/34e64d293ca9/sensors-22-05247-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a1/9324493/bc52c1f13c2e/sensors-22-05247-g012.jpg

相似文献

[1]
An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study.

Sensors (Basel). 2022-7-13

[2]
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.

BMC Bioinformatics. 2023-9-12

[3]
A Novel Extra Tree Ensemble Optimized DL Framework (ETEODL) for Early Detection of Diabetes.

Front Public Health. 2021

[4]
A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.

J Med Syst. 2017-11-9

[5]
Machine learning approach for predicting cardiovascular disease in Bangladesh: evidence from a cross-sectional study in 2023.

BMC Cardiovasc Disord. 2024-4-18

[6]
A hybrid super ensemble learning model for the early-stage prediction of diabetes risk.

Med Biol Eng Comput. 2023-3

[7]
Intelligent Machine Learning Approach for Effective Recognition of Diabetes in E-Healthcare Using Clinical Data.

Sensors (Basel). 2020-5-6

[8]
Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study.

Appl Biochem Biotechnol. 2019-7-27

[9]
An intelligent warning model for early prediction of cardiac arrest in sepsis patients.

Comput Methods Programs Biomed. 2019-6-11

[10]
An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI.

Sensors (Basel). 2022-9-25

引用本文的文献

[1]
Evolution of diabetes prediction using the fusion of ANOVA, ADASYN technique and XGBoost based on body composition data.

J Diabetes Metab Disord. 2025-6-17

[2]
Augmented Ensemble Model (AEM) for health trends prediction on social networks.

PLoS One. 2025-6-5

[3]
Next-generation diabetes diagnosis and personalized diet-activity management: A hybrid ensemble paradigm.

PLoS One. 2025-1-8

[4]
The anesthesiologist's guide to critically assessing machine learning research: a narrative review.

BMC Anesthesiol. 2024-12-18

[5]
An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques.

BMC Med Inform Decis Mak. 2024-12-18

[6]
An automated approach to predict diabetic patients using KNN imputation and effective data mining techniques.

BMC Med Res Methodol. 2024-9-27

[7]
The role of artificial intelligence in disease prediction: using ensemble model to predict disease mellitus.

Front Med (Lausanne). 2024-8-7

[8]
A unified Foot and Mouth Disease dataset for Uganda: evaluating machine learning predictive performance degradation under varying distributions.

Front Artif Intell. 2024-7-31

[9]
An intelligent diabetes classification and perception framework based on ensemble and deep learning method.

PeerJ Comput Sci. 2024-3-29

[10]
Improving the Accuracy of Continuous Blood Glucose Measurement Using Personalized Calibration and Machine Learning.

Diagnostics (Basel). 2023-7-27

本文引用的文献

[1]
A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods.

Comput Intell Neurosci. 2022

[2]
A Comprehensive Review of Various Diabetic Prediction Models: A Literature Survey.

J Healthc Eng. 2022

[3]
Performance Analysis of Deep-Neural-Network-Based Automatic Diagnosis of Diabetic Retinopathy.

Sensors (Basel). 2021-12-29

[4]
A review on current advances in machine learning based diabetes prediction.

Prim Care Diabetes. 2021-6

[5]
Classification and prediction of diabetes disease using machine learning paradigm.

Health Inf Sci Syst. 2020-1-3

[6]
Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017.

J Diabetes Res. 2017

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索