Suppr超能文献

利用ELA-CNN集成检测图像篡改:一个用于真伪验证的强大框架。

Detecting image manipulation with ELA-CNN integration: a powerful framework for authenticity verification.

作者信息

Nagm Ahmad M, Moussa Mona M, Shoitan Rasha, Ali Ahmed, Mashhour Mohamed, Salama Ahmed S, AbdulWakel Hamada I

机构信息

Department of Computer Engineering and Electronics, Cairo Higher Institute for Engineering, Computer Science and Management, Cairo, Egypt.

Computer and Systems Department, Electronics Research Institute, Cairo, Egypt.

出版信息

PeerJ Comput Sci. 2024 Aug 7;10:e2205. doi: 10.7717/peerj-cs.2205. eCollection 2024.

Abstract

The exponential progress of image editing software has contributed to a rapid rise in the production of fake images. Consequently, various techniques and approaches have been developed to detect manipulated images. These methods aim to discern between genuine and altered images, effectively combating the proliferation of deceptive visual content. However, additional advancements are necessary to enhance their accuracy and precision. Therefore, this research proposes an image forgery algorithm that integrates error level analysis (ELA) and a convolutional neural network (CNN) to detect the manipulation. The system primarily focuses on detecting copy-move and splicing forgeries in images. The input image is fed to the ELA algorithm to identify regions within the image that have different compression levels. Afterward, the created ELA images are used as input to train the proposed CNN model. The CNN model is constructed from two consecutive convolution layers, followed by one max pooling layer and two dense layers. Two dropout layers are inserted between the layers to improve model generalization. The experiments are applied to the CASIA 2 dataset, and the simulation results show that the proposed algorithm demonstrates remarkable performance metrics, including a training accuracy of 99.05%, testing accuracy of 94.14%, precision of 94.1%, and recall of 94.07%. Notably, it outperforms state-of-the-art techniques in both accuracy and precision.

摘要

图像编辑软件的指数级发展导致了虚假图像的产量迅速上升。因此,人们开发了各种技术和方法来检测经过处理的图像。这些方法旨在辨别真实图像和经过修改的图像,有效对抗欺骗性视觉内容的扩散。然而,还需要进一步改进以提高其准确性和精确性。因此,本研究提出了一种图像伪造算法,该算法集成了误差水平分析(ELA)和卷积神经网络(CNN)来检测图像篡改。该系统主要专注于检测图像中的复制移动和拼接伪造。将输入图像输入到ELA算法中,以识别图像中具有不同压缩水平的区域。然后,将生成的ELA图像用作输入来训练所提出的CNN模型。CNN模型由两个连续的卷积层构建而成,随后是一个最大池化层和两个全连接层。在各层之间插入两个随机失活层以提高模型的泛化能力。实验应用于CASIA 2数据集,仿真结果表明,所提出的算法展示了出色的性能指标,包括训练准确率99.05%、测试准确率94.14%、精确率94.1%和召回率94.07%。值得注意的是,它在准确率和精确率方面均优于现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b98/11323046/abdb1a9fe2c6/peerj-cs-10-2205-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验