Marimuthu Amarnath, Basu Hirakendu, Singh Shweta, Saha Sudeshna, Basu Ranita, Chandwadkar Pallavi, Acharya Celin, Patra Chandra N
Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45063-45077. doi: 10.1021/acsami.4c12476. Epub 2024 Aug 15.
Development of a hybrid multifunctional photothermal structure with multifunctional capabilities is deliberated as an effective approach for harvesting abundant solar energy for sustainable environmental applications. Achieving enhanced solar to thermal conversion efficiency utilizing a suitably designed, environmentally compatible thermal management structure however remains a significant challenge. Herein, we report the intercalation of VO and polypyrrole into a graphene oxide layer to design a hybrid photothermal assembly (PPy-VO-GO) and its multifunctional proficiencies. The hybrid photothermal structure demonstrated synergistic photothermal conversion, buoyant porous structure sustaining water transmission, and efficient steam release. VO and polypyrrole-intercalated optimized graphene oxide structure attained an evaporation rate of 1.9 kg m h with a conversion efficiency of 92% under 1 sun solar radiation. At maximum, the assembly's surface temperature hit 64 ± 2 °C, suggesting its suitability as a solar water purifier. Outdoor experiments suggest the evaporator assembly's capability to accumulate a total output of 15 kg m over a single day. Cell viability investigations revealed strong antimicrobial properties of PPy-VO-GO against both Gram-negative and Gram-positive bacteria, eliminating nearly all under 1 sun, making it a potential candidate for photothermal therapy. Furthermore, when combined with a commercial thermoelectric module, the framework displayed exceptional photothermal conversion efficiency, hinting at its potential for electrical power generation. The integration of PPy-VO-GO with a BiTe-based thermoelectric module significantly boosted the thermoelectric generator's performance, offering an enhanced power output of 2.8 mW and a high power density of 1.24 mW/cm, making them suitable for off-grid or remote-area application. Overall, the PPy-VO-GO photothermal assembly's stability, lack of leaching, effectiveness in producing pure water from seawater, antimicrobial efficacies, and recyclability make it an excellent choice for sustainable water treatment and power generation.
开发具有多功能的混合多功能光热结构被认为是一种有效的方法,可用于收集丰富的太阳能以实现可持续的环境应用。然而,利用适当设计的、与环境兼容的热管理结构来提高太阳能到热能的转换效率仍然是一项重大挑战。在此,我们报告了将VO和聚吡咯插入氧化石墨烯层中,以设计一种混合光热组件(PPy-VO-GO)及其多功能特性。该混合光热结构展示了协同光热转换、支撑水传输的浮力多孔结构以及高效的蒸汽释放。VO和聚吡咯插入优化的氧化石墨烯结构在1个太阳辐射下实现了蒸发速率为1.9 kg m h,转换效率为92%。该组件的表面温度最高达到64±2°C,表明其适合作为太阳能净水器。户外实验表明,蒸发器组件在一天内能够积累总计15 kg m的总输出。细胞活力研究表明,PPy-VO-GO对革兰氏阴性菌和革兰氏阳性菌均具有强大的抗菌性能,在1个太阳光照下几乎能消灭所有细菌,使其成为光热疗法的潜在候选者。此外,当与商业热电模块结合时,该框架显示出卓越的光热转换效率,暗示了其发电潜力。PPy-VO-GO与基于BiTe的热电模块集成显著提高了热电发电机的性能,提供了2.8 mW的增强功率输出和1.24 mW/cm的高功率密度,使其适用于离网或偏远地区应用。总体而言,PPy-VO-GO光热组件的稳定性、无浸出、从海水中生产纯水的有效性、抗菌效果和可回收性使其成为可持续水处理和发电的绝佳选择。