Bezza Fisseha A, Iwarere Samuel A, Brink Hendrik G, Chirwa Evans M N
Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
Sci Rep. 2024 Jun 14;14(1):13793. doi: 10.1038/s41598-024-62987-z.
Solar-driven interfacial desalination technology has shown great promise in tackling the urgent global water scarcity crisis due to its ability to localize heat and its high solar-to-thermal energy conversion efficiency. For the realization of sustainable saline water desalination, the exploration of novel photothermal materials with higher water vapor generation and photothermal conversion efficiency is indispensable. In the current study, a novel 3D interconnected monolithic Ag-doped rGO network was synthesized for efficient photothermal application. The Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) and FTIR analyses demonstrated that the controlled hydrothermal reduction of GO enabled the restoration of the conjugated sp bonded carbon network and the subsequent electrical and thermal conductivity through a significant reduction of oxygen-containing functional groups while maintaining the hydrophilicity of the composite photothermal material. In the solar simulated interfacial desalination study conducted using 3.5 wt.% saline water, the average surface temperatures of the 3D material increased from 27.1 to 54.7 °C in an hour, achieving an average net dark-excluded evaporation rate of 1.40 kg m h and a photothermal conversion efficiency of ~ 97.54% under 1 sun solar irradiance. In the outdoor real-world application test carried out, the surface temperature of the 3D solar evaporator reached up to 60 °C and achieved a net water evaporation rate of 1.50 kg m h under actual solar irradiation. The 3D interwoven porous hierarchical evaporator displayed no salt precipitation over the 54-h period monitored, demonstrating the promising salt rejection and real-world application potential for efficient desalination of saline water.
太阳能驱动的界面脱盐技术因其能够局部加热以及具有较高的太阳能-热能转换效率,在应对全球紧迫的水资源短缺危机方面展现出了巨大潜力。为了实现可持续的盐水脱盐,探索具有更高水蒸气产生量和光热转换效率的新型光热材料是必不可少的。在当前的研究中,合成了一种新型的三维互连整体式银掺杂还原氧化石墨烯网络,用于高效光热应用。紫外-可见-近红外(UV-Vis-NIR)和傅里叶变换红外光谱(FTIR)分析表明,通过对氧化石墨烯进行可控的水热还原,能够恢复共轭sp键合碳网络,并通过显著减少含氧化官能团来提高复合材料光热材料的导电性和热导率,同时保持其亲水性。在使用3.5 wt.%盐水进行的太阳能模拟界面脱盐研究中,该三维材料的平均表面温度在一小时内从27.1℃升高到54.7℃,在1个太阳辐照度下实现了1.40 kg m⁻² h⁻¹的平均净暗排除蒸发速率和约97.54%的光热转换效率。在进行的户外实际应用测试中,三维太阳能蒸发器的表面温度在实际太阳辐照下达到了60℃,净水蒸发速率为1.50 kg m⁻² h⁻¹。在监测的54小时内,三维交织多孔分级蒸发器没有出现盐沉淀,这表明其在盐水高效脱盐方面具有良好的抗盐性能和实际应用潜力。