用于流体和固体领域的两栖混合激光镊子

Amphibious Hybrid Laser Tweezers for Fluid and Solid Domains.

作者信息

Zhu Runlin, Shen Tianci, Gu Zhaoqi, Shi Zhangxing, Dou Lin, Liu Yifei, Zhuang Songlin, Gu Fuxing

机构信息

Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

ACS Nano. 2024 Aug 27;18(34):23232-23242. doi: 10.1021/acsnano.4c05970. Epub 2024 Aug 15.

Abstract

Optical trapping is a potent tool for achieving precise and noninvasive manipulation of small objects in a vacuum and liquids. However, due to the substantial disparity between optical forces and interfacial adhesion, target objects should be suspended in fluid environments, rendering solid contact surfaces a restricted area for conventional optical tweezers. In this work, by relying on a single continuous wave (CW) laser, we demonstrate an optical manipulation system applicable for both fluid and solid domains, namely, amphibious hybrid laser tweezers. The key to our system lies in modulating the intensity of the CW laser with duration shorter than the dynamic thermal equilibrium time within objects, wherein strong thermal gradient forces with ∼6 orders of magnitude higher than the forces in optical tweezers are produced, enabling moving and trapping micro/nano-objects on solid interfaces. Thereby, CW laser-based optical tweezers and pulsed laser-based photothermal shock tweezers are seamlessly fused with the advantages of cost-effectiveness and simplicity. Our concept breaks the stereotype that CW lasers are limited to generating tiny forces and instead achieve ultrawide force generation spanning from femto-newtons (10 N) to (10 N). Our work expands the horizon of optical manipulation by seamlessly bridging its applications in fluid and solid environments and holds promise for inspiring optical manipulation techniques to perform more challenging tasks, which may unearth application scenarios in diverse fields such as fundamental physical research, nanofabrication, micro/nanorobotics, biomedicine, and cytology.

摘要

光镊是一种在真空和液体中对微小物体进行精确无创操纵的强大工具。然而,由于光力与界面粘附力之间存在巨大差异,目标物体应悬浮在流体环境中,这使得固体接触表面成为传统光镊的受限区域。在这项工作中,我们依靠单一连续波(CW)激光,展示了一种适用于流体和固体领域的光学操纵系统,即两栖混合激光镊子。我们系统的关键在于在短于物体内动态热平衡时间的持续时间内调制连续波激光的强度,从而产生比光镊中的力高约6个数量级的强大热梯度力,能够在固体界面上移动和捕获微/纳米物体。由此,基于连续波激光的光镊和基于脉冲激光的光热冲击镊子无缝融合,兼具成本效益高和操作简单的优点。我们的概念打破了连续波激光仅限于产生微小力的刻板印象,实现了从飞牛顿(10⁻¹⁵N)到牛顿(10⁰N)的超宽力产生范围。我们的工作通过无缝连接其在流体和固体环境中的应用,扩展了光学操纵的视野,并有望激发光学操纵技术执行更具挑战性任务,这可能在基础物理研究、纳米制造、微/纳米机器人技术、生物医学和细胞学等不同领域挖掘应用场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索