Zhao Haoyu, Du Mingjie, Mo Haoran, Wang Cuie, Zhou Wei, Liao Kaiming, Shao Zongping
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):44997-45005. doi: 10.1021/acsami.4c10546. Epub 2024 Aug 15.
Despite good compatibility with Li metal, garnet solid electrolytes suffer from severe electron-attack-induced Li-metal penetration and large interfacial resistance. Here, a formic acid (HCOOH)-induced electron-blocking and lithiophilic interlayer is created via a spontaneous reaction with surface LiCO contamination on the garnet electrolyte (LLZTO) pellet. Unlike previous methods that involved immersing LLZTO in acidic solutions, this study employs a volatile small-molecule organic acid that is easily removable, condensed, and recyclable, thus circumventing the environmental drawbacks associated with acid waste. The Li symmetric cell assembled with HCOOH-treated LLZTO exhibits a low interfacial impedance (3 Ω cm) and a high critical current density (1.7 mA cm) at room temperature, enabling the cell to cycle continuously for over 1000 h at 0.2 mA cm. Furthermore, under a stacking pressure of 2 MPa, stable lithium plating/stripping was achieved at a current density of 0.3 mA cm with the assistance of HCOOH treatment. Additionally, the battery paired with a LiFePO cathode delivers a high capacity of 151.7 mAh g at 1 C and maintains 88.5% of the initial capacity after 500 cycles, suggesting the feasibility of this interfacial engineering strategy for garnet-based solid Li-metal batteries.
尽管石榴石固态电解质与锂金属具有良好的兼容性,但仍存在严重的电子攻击诱导锂金属穿透和较大的界面电阻问题。在此,通过与石榴石电解质(LLZTO)颗粒表面的LiCO污染物发生自发反应,形成了一种甲酸(HCOOH)诱导的电子阻挡和亲锂中间层。与之前将LLZTO浸入酸性溶液的方法不同,本研究采用了一种易于去除、冷凝和回收的挥发性小分子有机酸,从而规避了与酸性废物相关的环境问题。用HCOOH处理过的LLZTO组装的锂对称电池在室温下表现出低界面阻抗(3Ω·cm)和高临界电流密度(1.7 mA·cm),使电池能够在0.2 mA·cm下连续循环超过1000小时。此外,在2 MPa的堆叠压力下,借助HCOOH处理,在0.3 mA·cm的电流密度下实现了稳定的锂电镀/剥离。此外,与LiFePO正极配对的电池在1 C下具有151.7 mAh·g的高容量,在500次循环后保持初始容量的88.5%,这表明这种界面工程策略对于基于石榴石的固态锂金属电池是可行的。