Suppr超能文献

用于4.8V全固态锂电池的氯化物固体电解质中钛酸钡纳米颗粒诱导的界面电场优化

BaTiO Nanoparticle-Induced Interfacial Electric Field Optimization in Chloride Solid Electrolytes for 4.8 V All-Solid-State Lithium Batteries.

作者信息

Xiao Qingmei, Huang Shiming, Liang Donghao, Liu Cheng, Zhang Ruonan, Li Wenjin, Liu Guangliang Gary

机构信息

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.

出版信息

Nanomicro Lett. 2025 Sep 1;18(1):52. doi: 10.1007/s40820-025-01901-2.

Abstract

Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries (ASSBs). However, their relatively low oxidative decomposition threshold (~ 4.2 V vs. Li/Li) constrains their use in ultrahigh-voltage systems (e.g., 4.8 V). In this work, ferroelectric BaTiO (BTO) nanoparticles with optimized thickness of ~ 50-100 nm were successfully coated onto LiYZrCl (LYZC@5BTO) electrolytes using a time-efficient ball-milling process. The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC's high ionic conductivity, which remained at 1.06 mS cm for LYZC@5BTO. Furthermore, this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes, suppresses parasitic interfacial reactions with single-crystal NCM811 (SCNCM811), and inhibits the irreversible phase transition of SCNCM811. Consequently, the cycling stability of LYZC under high-voltage conditions (4.8 V vs. Li⁺/Li) is significantly improved. Specifically, ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 mAh g over 200 cycles at 1 C, way outperforming cell using pristine LYZC that only shows a capacity of 55.4 mAh g. Furthermore, time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially, rising to 26% after 200 cycles in pristine LYZC. In contrast, LYZC@5BTO limited this increase to only 14%, confirming the effectiveness of BTO in stabilizing the interfacial chemistry. This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.

摘要

基于氯化物的固体电解质被认为是下一代高能量密度全固态电池(ASSB)的有前途的候选材料。然而,它们相对较低的氧化分解阈值(相对于Li/Li约为4.2 V)限制了它们在超高压系统(例如4.8 V)中的应用。在这项工作中,使用高效球磨工艺成功地将厚度优化为约50-100 nm的铁电BaTiO(BTO)纳米颗粒涂覆在LiYZrCl(LYZC@5BTO)电解质上。纳米颗粒诱导的界面离子传导增强机制有助于保持LYZC的高离子电导率,LYZC@5BTO的离子电导率保持在1.06 mS cm。此外,这种表面电场工程策略有效地减轻了基于氯化物的固体电解质的电压诱导自分解,抑制了与单晶NCM811(SCNCM811)的寄生界面反应,并抑制了SCNCM811的不可逆相变。因此,LYZC在高压条件下(相对于Li⁺/Li为4.8 V)的循环稳定性得到了显著提高。具体而言,采用LYZC@5BTO的ASSB电池在1 C下200次循环中表现出95.4 mAh g的优异放电容量,远远超过使用原始LYZC的电池,后者仅显示出55.4 mAh g的容量。此外,飞行时间二次离子质谱和X射线光电子能谱分析表明,累积界面副反应产生的金属-O-氯副产物最初占表面物种的6%,在原始LYZC中200次循环后升至26%。相比之下,LYZC@5BTO将这种增加限制在仅14%,证实了BTO在稳定界面化学方面的有效性。这种电场调制策略为高压固态电解质和能量密集型ASSB的商业化提供了一条有前途的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3c5/12401864/397508c66aa2/40820_2025_1901_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验