Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
Department of Chemical and Biological Engineering, Troy, NY, USA.
Appl Microbiol Biotechnol. 2024 Aug 15;108(1):440. doi: 10.1007/s00253-024-13275-3.
Chondroitin sulfate E (CS-E) is a vital sulfated glycosaminoglycan with diverse biological functions and therapeutic potential. This study marks a significant milestone by achieving the first successful microbial production of chondroitin 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) in Escherichia coli, enabling recombinant CS-E biosynthesis. Initially, we identified sulfotransferases capable of converting chondroitin sulfate A (CS-A) to CS-E, but these enzymes were non-functional when expressed in E. coli. Moreover, there is no experimentally derived three-dimensional structure available for this specific sulfotransferase in the protein databases. To overcome this challenge, we developed a 3D model of GalNAc4S-6ST using AlphaFold2 and employed PROSS stability design to identify mutations that enhance enzyme solubility and stability with different N-terminal truncations. Experimental validation of these mutations led to the identification of several functional enzymes. Among various E. coli strains tested for enzyme expression, Origami B (DE3) emerged as the most effective host. This facilitated the enzymatic conversion of CS-A to CS-E, achieving a conversion rate of over 50%, and marking the first successful biosynthesis of animal-free CS-E. These findings represent a significant advancement towards the large-scale synthesis of CS-E using cost-effective carbon sources, offering a sustainable alternative to traditional sourcing from endangered animals like sharks. KEY POINTS: • Functional expression of GalNAc4S-6ST in a simple prokaryote was accomplished. • First-time biosynthesis of animal-free chondroitin sulfate E was accomplished.
硫酸软骨素 E(CS-E)是一种具有多种生物学功能和治疗潜力的重要硫酸化糖胺聚糖。本研究通过在大肠杆菌中首次成功实现硫酸软骨素 4-硫酸 6-O-磺基转移酶(GalNAc4S-6ST)的微生物生产,标志着实现重组 CS-E 生物合成的重要里程碑。最初,我们鉴定了能够将硫酸软骨素 A(CS-A)转化为 CS-E 的磺基转移酶,但这些酶在大肠杆菌中表达时没有功能。此外,在蛋白质数据库中,没有针对这种特定磺基转移酶的实验衍生的三维结构。为了克服这一挑战,我们使用 AlphaFold2 开发了 GalNAc4S-6ST 的 3D 模型,并采用 PROSS 稳定性设计来鉴定增强酶可溶性和稳定性的突变,同时进行不同 N 端截断。对这些突变的实验验证导致了几种功能酶的鉴定。在测试的各种大肠杆菌菌株中,Origami B(DE3)是最有效的宿主。这促进了 CS-A 向 CS-E 的酶促转化,转化率超过 50%,首次成功合成了无动物源的 CS-E。这些发现代表着朝着使用具有成本效益的碳源进行 CS-E 的大规模合成迈出了重要一步,为从鲨鱼等濒危动物传统来源获取提供了可持续的替代方案。关键点:
GalNAc4S-6ST 在简单原核生物中的功能表达得以实现。
首次成功合成无动物源硫酸软骨素 E。