Suppr超能文献

关节速度层面上用于冗余机械手的小脑启发式学习与控制方案

Cerebellum-Inspired Learning and Control Scheme for Redundant Manipulators at Joint Velocity Level.

作者信息

Jin Long, Huang Renpeng, Liu Mei, Ma Xin

出版信息

IEEE Trans Cybern. 2024 Nov;54(11):6297-6306. doi: 10.1109/TCYB.2024.3436021. Epub 2024 Oct 30.

Abstract

Redundant manipulators, as mechanical equipments imitating human arms, have been applied to various areas in recent years from the perspective of control. Different from pure control technologies, the motion capability of a human arm is achieved by a complex and efficient neural system, with the cerebellum playing a pivotal role. Motivated by this fact, we design a cerebellum model based on an echo state network (ESN) for the learning and control of redundant manipulators. In addition, to simulate the skillful control ability of the cerebellum over movements of human arms, the proposed model is constructed at the joint velocity level. Furthermore, to improve the accuracy and applicability, we propose an ESN-based Kalman-filter-incorporated and cerebellum-inspired (KFICI) scheme for the learning and control of redundant manipulators with Kalman filter incorporated. The proposed scheme enables a redundant manipulator to track the desired trajectory at the velocity level and tolerate noises. Finally, simulations and experiments based on a physical redundant manipulator are performed to verify the effectiveness of the proposed control scheme.

摘要

冗余机械手作为模仿人类手臂的机械设备,近年来已从控制角度应用于各个领域。与纯控制技术不同,人类手臂的运动能力是由复杂而高效的神经系统实现的,其中小脑起着关键作用。受这一事实的启发,我们设计了一种基于回声状态网络(ESN)的小脑模型,用于冗余机械手的学习与控制。此外,为了模拟小脑对人类手臂运动的熟练控制能力,所提出的模型是在关节速度层面构建的。此外,为了提高准确性和适用性,我们提出了一种基于ESN的融合卡尔曼滤波器且受小脑启发的(KFICI)方案,用于融合卡尔曼滤波器的冗余机械手的学习与控制。所提出的方案使冗余机械手能够在速度层面跟踪期望轨迹并容忍噪声。最后,基于物理冗余机械手进行了仿真和实验,以验证所提出控制方案的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验