Li Mengying
Academy of Music, Suihua University, Suihua, 152000, China.
Sci Rep. 2025 Jan 8;15(1):1305. doi: 10.1038/s41598-025-85407-2.
The purpose of this study is to investigate how deep learning and other artificial intelligence (AI) technologies can be used to enhance the intelligent level of dance instruction. The study develops a dance action recognition and feedback model based on the Graph Attention Mechanism (GA) and Bidirectional Gated Recurrent Unit (3D-Resnet-BigRu). In this model, time series features are captured using BiGRU after 3D-ResNet is inserted to extract video features. Lastly, GA dynamically modifies the node weights to maximize action recognition performance. According to the experimental results, this model's F1 score is 85.34%, and its maximum accuracy on the NTU-RGBD60 datasets is more than 5% greater than that of the current 3D Convolutional Neural Network (3D-CNN) baseline algorithm. In addition, the model shows high efficiency and resource utilization in test time, training time and CPU occupancy. The research shows that this model has strong competitiveness in dealing with complex dance action recognition tasks, and provides efficient and personalized technical support for future dance teaching. Meanwhile, the model provides a powerful tool for dance educators to support their teaching activities and enhance students' learning experience.
本研究的目的是探讨如何利用深度学习和其他人工智能(AI)技术来提高舞蹈教学的智能水平。该研究基于图注意力机制(GA)和双向门控循环单元(3D-Resnet-BigRu)开发了一种舞蹈动作识别与反馈模型。在该模型中,在插入3D-ResNet以提取视频特征后,使用双向门控循环单元(BiGRU)捕获时间序列特征。最后,图注意力机制(GA)动态修改节点权重以最大化动作识别性能。根据实验结果,该模型的F1分数为85.34%,其在NTU-RGBD60数据集上的最大准确率比当前的3D卷积神经网络(3D-CNN)基线算法高出5%以上。此外,该模型在测试时间、训练时间和CPU占用率方面显示出高效率和资源利用率。研究表明,该模型在处理复杂的舞蹈动作识别任务方面具有强大的竞争力,并为未来的舞蹈教学提供了高效且个性化的技术支持。同时,该模型为舞蹈教育工作者提供了一个强大的工具,以支持他们的教学活动并增强学生的学习体验。