Wang Wu, Huang Taobo, Cao Zhengmao, Zhu Xiuping, Sun Yanjuan, Dong Fan
School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China.
ACS Nano. 2024 Aug 27;18(34):23205-23216. doi: 10.1021/acsnano.4c05801. Epub 2024 Aug 15.
Achieving selective sensing toward target volatile organic compound gases is of vital importance in the fields of air quality assessment, food freshness evaluation, and diagnosis of patients via exhaled breath. However, chemiresistive sensors that exhibit specificity like biological enzymes in a complex environment are rare. Herein, we developed a strategy of optimizing oxygen vacancy structures in tin oxides to induce specific catalysis, activating 100% selective sensing toward amine gases at room temperature. technologies and theoretical calculations reveal that the "donor-receptor" coordination between nitrogen atoms from amine molecules and bridging oxygen vacancies (OV)-induced electron-deficient center is the essence of specific catalysis and provides the bridge from the surface oxidation reaction to electrophysical characteristics evolution, which allows the sensor to exhibit amine-specific sensing behavior, even in gas mixtures. Moreover, OV enhances the selectivity by enabling a room-temperature sensing pathway where lattice oxygens participate in catalytic oxidation for amine molecules, resulting in record-high sensing values: 19,938.92 toward 100 ppm of triethylamine, 15,236.78 toward trimethylamine, and 123.41 toward diethylamine. Our findings illustrate the feasibility of designing specific active sites through defect engineering and can contribute to the advancement of highly selective sensors based on catalytic processes.
在空气质量评估、食品新鲜度评估以及通过呼气诊断患者等领域,实现对目标挥发性有机化合物气体的选择性传感至关重要。然而,在复杂环境中表现出像生物酶一样特异性的化学电阻传感器却很罕见。在此,我们开发了一种优化氧化锡中氧空位结构以诱导特定催化作用的策略,从而在室温下实现对胺类气体的100%选择性传感。技术和理论计算表明,胺分子中的氮原子与桥连氧空位(OV)诱导的缺电子中心之间的“供体-受体”配位是特定催化作用的本质,并为从表面氧化反应到电物理特性演变提供了桥梁,这使得传感器即使在气体混合物中也能表现出对胺类的特异性传感行为。此外,OV通过启用一种室温传感途径来提高选择性,在该途径中晶格氧参与胺分子的催化氧化,从而产生创纪录的高传感值:对100 ppm三乙胺为19,938.92,对三甲胺为15,236.78,对二乙胺为123.41。我们的研究结果说明了通过缺陷工程设计特定活性位点的可行性,并有助于基于催化过程的高选择性传感器的发展。