Suppr超能文献

提高辨认组排斥的诊断价值。

Improving the diagnostic value of lineup rejections.

机构信息

School of Psychology, University of Aberdeen, King's College, Aberdeen AB24 3FX, United Kingdom.

出版信息

Cognition. 2024 Nov;252:105917. doi: 10.1016/j.cognition.2024.105917. Epub 2024 Aug 14.

Abstract

Erroneous eyewitness identification evidence is likely the leading cause of wrongful convictions. To minimize this error, scientists recommend collecting confidence. Research shows that eyewitness confidence and accuracy are strongly related when an eyewitness identifies someone from an initial and properly administered lineup. However, confidence is far less informative of accuracy when an eyewitness identifies no one and rejects the lineup instead. In this study, I aimed to improve the confidence-accuracy relationship for lineup rejections in two ways. First, I aimed to find the lineup that yields the strongest confidence-accuracy relationship for lineup rejections by comparing the standard, simultaneous procedure used by police worldwide to the novel "reveal" procedure designed by scientists to boost accuracy. Second, I aimed to find the best method for collecting confidence. To achieve this secondary aim, I made use of machine-learning techniques to compare confidence expressed in words to numeric confidence ratings. First, I find a significantly stronger confidence-accuracy relationship for lineup rejections in the reveal than in the standard procedure regardless of the method used to collect confidence. Second, I find that confidence expressed in words captures unique diagnostic information about the likely accuracy of a lineup rejection separate from the diagnostic information captured by numeric confidence ratings. These results inform models of recognition memory and may improve the criminal-legal system by increasing the diagnostic value of a lineup rejection.

摘要

错误的目击证人识别证据很可能是导致错误定罪的主要原因。为了最大限度地减少这种错误,科学家建议收集证人的信心。研究表明,当目击证人从最初的、经过适当管理的列队中识别出某人时,目击证人的信心和准确性之间存在很强的相关性。然而,当目击证人没有认出任何人并拒绝列队时,信心对准确性的指示性要低得多。在这项研究中,我旨在通过两种方式来提高列队拒绝的信心-准确性关系。首先,我旨在通过比较全球警察使用的标准、同时程序和科学家设计的旨在提高准确性的新颖"揭示"程序,找到产生最强的列队拒绝信心-准确性关系的列队。其次,我旨在找到收集信心的最佳方法。为了实现这一二级目标,我利用机器学习技术比较了用文字表达的信心和数字信心评分。首先,我发现,无论使用何种方法收集信心,揭示程序都比标准程序产生了更强的列队拒绝信心-准确性关系。其次,我发现,用文字表达的信心捕捉到了与数字信心评分所捕捉到的诊断信息不同的、关于列队拒绝可能准确性的独特诊断信息。这些结果为识别记忆模型提供了信息,并通过提高列队拒绝的诊断价值,可能改善刑事法律制度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验