Suppr超能文献

基于飞行时间和反卷积的 X 射线医学成像中的散射估计与校正。

Scatter estimation and correction using time-of-flight and deconvolution in x-ray medical imaging.

机构信息

Institut interdisciplinaire d'innovation technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada.

Département de génie électrique et génie informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada.

出版信息

Phys Med Biol. 2024 Aug 29;69(17). doi: 10.1088/1361-6560/ad700e.

Abstract

Time-of-flight (TOF) scatter rejection requires a total timing jitter, including the detector timing jitter and the x-ray source's pulses width, of 50 ps or less to mitigate most of the effects of scattered photons in radiography and CT imaging. However, since the total contribution of the source and detector to the timing jitter can be retrieved during an acquisition with nothing between the source and detector, it can be demonstrated that this contribution may be partially removed to improve the image quality.A scatter correction method using iterative deconvolution of the measured time point-spread function estimates the number of scattered photons detected in each pixel. To evaluate the quality of the estimation, GATE was used to simulate the radiography of a water cylinder with bone inserts, and a head and torso in a system with total timing jitters from 100 ps up to 500 ps full-width-at-half-maximum (FWHM).With a total timing jitter of 200 ps FWHM, 89% of the contrast degradation caused by scattered photons was recovered in a head and torso radiography, compared to 28% with a simple time threshold method. Corrected images using the estimation have a percent root-mean square error between 2% and 14% in both phantoms with timing jitters from 100 to 500 ps FWHM which is lower than the error achieved with scatter rejection alone at 100 ps FWHM.TOF x-ray imaging has the potential to mitigate the effects of the scattering contribution and offers an alternative to anti-scatter grids that avoids loss of primary photons. Compare to simple TOF scatter rejection using only a threshold, the deconvolution estimation approach has lower requirements on both the source and detector. These requirements are now within reach of state-of-the-art systems.

摘要

飞行时间 (TOF) 散射抑制需要总定时抖动,包括探测器定时抖动和 X 射线源的脉冲宽度,在 50ps 或更短的时间内以减轻放射摄影和 CT 成像中散射光子的大部分影响。然而,由于源和探测器对定时抖动的总贡献可以在源和探测器之间没有任何东西的情况下在采集期间恢复,因此可以证明可以部分去除这种贡献以改善图像质量。使用迭代反卷积测量的时间点扩展函数的散射校正方法来估计每个像素中检测到的散射光子的数量。为了评估估计的质量,GATE 被用于模拟具有骨插入的水筒的放射摄影,以及在总定时抖动从 100ps 到 500ps 半最大值全宽(FWHM)的系统中的头部和躯干。在总定时抖动为 200ps FWHM 的情况下,与使用简单时间阈值方法相比,头部和躯干放射摄影中散射光子引起的对比度降低了 89%得到恢复。使用估计值校正的图像在定时抖动从 100ps 到 500ps FWHM 的两个模型中具有 2%至 14%的均方根误差百分比,低于单独使用散射抑制在 100ps FWHM 时达到的误差。TOF X 射线成像有潜力减轻散射贡献的影响,并提供了一种替代防散射格栅的方法,避免了初级光子的损失。与仅使用阈值的简单 TOF 散射抑制相比,反卷积估计方法对源和探测器的要求较低。这些要求现在已经达到了最先进的系统的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验