Suppr超能文献

基于机器学习的内镜逆行胰胆管造影术后胰腺炎及预防措施选择的即时护理风险计算器的开发与验证。

Development and validation of a machine learning-based, point-of-care risk calculator for post-ERCP pancreatitis and prophylaxis selection.

作者信息

Brenner Todd, Kuo Albert, Sperna Weiland Christina J, Kamal Ayesha, Elmunzer B Joseph, Luo Hui, Buxbaum James, Gardner Timothy B, Mok Shaffer S, Fogel Evan S, Phillip Veit, Choi Jun-Ho, Lua Guan W, Lin Ching-Chung, Reddy D Nageshwar, Lakhtakia Sundeep, Goenka Mahesh K, Kochhar Rakesh, Khashab Mouen A, van Geenen Erwin J M, Singh Vikesh K, Tomasetti Cristian, Akshintala Venkata S

机构信息

Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

Gastrointest Endosc. 2025 Jan;101(1):129-138.e0. doi: 10.1016/j.gie.2024.08.009. Epub 2024 Aug 13.

Abstract

BACKGROUND AND AIMS

A robust model of post-ERCP pancreatitis (PEP) risk is not currently available. We aimed to develop a machine learning-based tool for PEP risk prediction to aid in clinical decision making related to periprocedural prophylaxis selection and postprocedural monitoring.

METHODS

Feature selection, model training, and validation were performed using patient-level data from 12 randomized controlled trials. A gradient-boosted machine (GBM) model was trained to estimate PEP risk, and the performance of the resulting model was evaluated using the area under the receiver operating curve (AUC) with 5-fold cross-validation. A web-based clinical decision-making tool was created, and a prospective pilot study was performed using data from ERCPs performed at the Johns Hopkins Hospital over a 1-month period.

RESULTS

A total of 7389 patients were included in the GBM with an 8.6% rate of PEP. The model was trained on 20 PEP risk factors and 5 prophylactic interventions (rectal nonsteroidal anti-inflammatory drugs [NSAIDs], aggressive hydration, combined rectal NSAIDs and aggressive hydration, pancreatic duct stenting, and combined rectal NSAIDs and pancreatic duct stenting). The resulting GBM model had an AUC of 0.70 (65% specificity, 65% sensitivity, 95% negative predictive value, and 15% positive predictive value). A total of 135 patients were included in the prospective pilot study, resulting in an AUC of 0.74.

CONCLUSIONS

This study demonstrates the feasibility and utility of a novel machine learning-based PEP risk estimation tool with high negative predictive value to aid in prophylaxis selection and identify patients at low risk who may not require extended postprocedure monitoring.

摘要

背景与目的

目前尚无完善的内镜逆行胰胆管造影术后胰腺炎(PEP)风险模型。我们旨在开发一种基于机器学习的PEP风险预测工具,以辅助与围手术期预防措施选择和术后监测相关的临床决策。

方法

使用来自12项随机对照试验的患者水平数据进行特征选择、模型训练和验证。训练一个梯度提升机(GBM)模型来估计PEP风险,并使用接受者操作特征曲线下面积(AUC)和5折交叉验证来评估所得模型的性能。创建了一个基于网络的临床决策工具,并使用约翰霍普金斯医院在1个月内进行的ERCP数据进行了一项前瞻性试点研究。

结果

GBM共纳入7389例患者,PEP发生率为8.6%。该模型基于20个PEP风险因素和5种预防干预措施(直肠非甾体抗炎药[NSAIDs]、积极补液、直肠NSAIDs与积极补液联合、胰管支架置入以及直肠NSAIDs与胰管支架置入联合)进行训练。所得GBM模型的AUC为0.70(特异性65%,敏感性65%,阴性预测值95%,阳性预测值15%)。前瞻性试点研究共纳入135例患者,AUC为0.74。

结论

本研究证明了一种新型的基于机器学习的PEP风险评估工具的可行性和实用性,该工具具有较高的阴性预测值,有助于预防措施的选择,并识别可能不需要延长术后监测的低风险患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验