Suppr超能文献

光遗传学操控溶酶体生理学和自噬活性。

Optogenetic manipulation of lysosomal physiology and autophagic activity.

机构信息

Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

Autophagy. 2024 Nov;20(11):2591-2592. doi: 10.1080/15548627.2024.2392464. Epub 2024 Aug 28.

Abstract

Lysosomes are essential degradative organelles and signaling hubs within cells, playing a crucial role in the regulation of macroautophagy/autophagy. Dysfunction of lysosomes and impaired autophagy are closely associated with the development of various neurodegenerative diseases. Enhancing lysosomal activity and boosting autophagy levels holds great promise as effective strategies for treating these diseases. However, there remains a lack of methods to dynamically regulate lysosomal activity and autophagy levels in living cells or animals. In our recent work, we applied optogenetics to manipulate lysosomal physiology and function, developing three lysosome-targeted optogenetic tools: lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2. These new actuators enable light-dependent regulation of key aspects such as lysosomal membrane potential, lumenal pH, hydrolase activity, degradation processes, and Ca dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy via the MTOR pathway while it promotes Aβ clearance through autophagy induction in cellular models of Alzheimer disease. Furthermore, lyso-ChR2 activation reduces Aβ deposition and alleviates Aβ-induced paralysis in models of Alzheimer disease. Our lysosomal optogenetic actuators offer a novel method for dynamically regulating lysosomal physiology and autophagic activity in living cells and animals.

摘要

溶酶体是细胞内重要的降解细胞器和信号枢纽,在调控巨自噬/自噬中起着关键作用。溶酶体功能障碍和自噬受损与各种神经退行性疾病的发展密切相关。增强溶酶体活性和提高自噬水平有望成为治疗这些疾病的有效策略。然而,目前仍然缺乏在活细胞或动物中动态调节溶酶体活性和自噬水平的方法。在我们最近的工作中,我们应用光遗传学来操纵溶酶体的生理学和功能,开发了三种溶酶体靶向的光遗传学工具:lyso-NpHR3.0、lyso-ArchT 和 lyso-ChR2。这些新的激活剂使我们能够用光依赖性的方式调节关键方面,如溶酶体膜电位、腔内腔 pH 值、水解酶活性、降解过程和 Ca 动力学在活细胞中。值得注意的是,lyso-ChR2 的激活通过 MTOR 途径诱导自噬,同时通过诱导自噬来促进阿尔茨海默病细胞模型中的 Aβ 清除。此外,lyso-ChR2 的激活减少了 Aβ 的沉积,并缓解了阿尔茨海默病模型中 Aβ 诱导的瘫痪。我们的溶酶体光遗传学激活剂为在活细胞和动物中动态调节溶酶体生理学和自噬活性提供了一种新方法。

相似文献

1
Optogenetic manipulation of lysosomal physiology and autophagic activity.光遗传学操控溶酶体生理学和自噬活性。
Autophagy. 2024 Nov;20(11):2591-2592. doi: 10.1080/15548627.2024.2392464. Epub 2024 Aug 28.
10
Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases.神经退行性疾病中自噬-溶酶体功能障碍的机制。
Nat Rev Mol Cell Biol. 2024 Nov;25(11):926-946. doi: 10.1038/s41580-024-00757-5. Epub 2024 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验