Suppr超能文献

自噬溶酶体相关神经元死亡在神经退行性疾病中的作用。

Autophagy-lysosomal-associated neuronal death in neurodegenerative disease.

机构信息

Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.

Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.

出版信息

Acta Neuropathol. 2024 Sep 11;148(1):42. doi: 10.1007/s00401-024-02799-7.

Abstract

Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.

摘要

自噬是降解受损或衰老成分的主要溶酶体途径,通过消除有毒细胞器和肽来保护神经元,恢复营养和能量稳态,并抑制细胞凋亡。这些功能在神经元中尤为重要,因为神经元是后有丝分裂的,必须在面对细胞衰老带来的越来越多的挑战的情况下存活几十年。自噬失败,特别是与溶酶体(“噬体”)功能下降有关的自噬失败,会增加神经元对阿尔茨海默病(AD)和其他老年发病神经退行性疾病的遗传和环境因素的易感性。全球自噬-溶酶体途径和紧密整合的内溶酶体系统的成分越来越被认为是这些疾病的主要靶点。在 AD 中,高度易受影响的锥体神经元群体中自噬诱导增加和溶酶体功能减弱之间的不平衡导致细胞内溶酶体中未降解底物的积累,包括 APP-βCTF,一种溶酶体酸化抑制剂,以及膜损伤性 Aβ肽。在这些神经元中最受影响的神经元中,β-淀粉样蛋白在斑块样聚集体中在神经元内积累,当这些神经元死亡时,这些聚集体成为细胞外老年斑,反映了人类 AD 大脑和 AD 病理模型中所见的淀粉样斑块的“内向外”起源。在这篇综述中,作者描述了溶酶体依赖性神经元细胞死亡在与独特的极端自噬病理(PANTHOS)相关的 AD 中的重要性,该病理被描述为在 AD 的最早“神经元内”阶段期间由溶酶体膜通透性触发。其他细胞死亡级联的效应物,特别是钙激活的钙蛋白酶和蛋白激酶,有助于溶酶体损伤,导致组织蛋白酶的渗漏和其他死亡级联的激活。AD 中的随后事件,如小胶质细胞浸润和神经炎症,会引起进一步的细胞毒性。在主要的神经退行性疾病模型中,通过逆转潜在的主要溶酶体缺陷,神经元死亡和随之而来的神经病理学得到了实质性的改善,因此,溶酶体衰竭和自噬功能障碍被认为是溶酶体依赖性细胞死亡和 AD 发病机制的主要触发因素,并成为有前途的治疗靶点。

相似文献

引用本文的文献

3
-Induced Degeneration of Nociceptive Neurons in .诱导……中伤害性神经元的退化
bioRxiv. 2025 May 7:2025.05.01.651706. doi: 10.1101/2025.05.01.651706.

本文引用的文献

1
Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases.神经退行性疾病中自噬-溶酶体功能障碍的机制。
Nat Rev Mol Cell Biol. 2024 Nov;25(11):926-946. doi: 10.1038/s41580-024-00757-5. Epub 2024 Aug 6.
7
Neuritic Plaques - Gateways to Understanding Alzheimer's Disease.神经炎性斑块——理解阿尔茨海默病的关键切入点
Mol Neurobiol. 2024 May;61(5):2808-2821. doi: 10.1007/s12035-023-03736-7. Epub 2023 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验