Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
Food Res Int. 2024 Sep;192:114788. doi: 10.1016/j.foodres.2024.114788. Epub 2024 Jul 16.
Ensuring food safety, particularly for vulnerable groups, like infants and young children, requires identifying and prioritizing potential hazards in food chains. We previously developed a web-based decision support system (DSS) to identify specific microbiological hazards (MHs) in infant and toddler foods through a structured five-step process. This study takes the framework further by introducing systematic risk ranking (RR) steps to rank MH risks with seven criteria: process survival, recontamination, growth opportunity, meal preparation, hazard-food association evidence, food consumption habits of infants and toddlers in the EU, and MH severity. Each criterion is given a semi-quantitative or quantitative score or risk value, contributing to the final MH risk calculation via three aggregation methods: semi-quantitative risk scoring, semi-quantitative risk value, and outranking multi-criteria decision analysis (MCDA). To validate the criteria and ranking approaches, we conducted a case study to rank MH risks in infant formula, compared the results of the three risk ranking methods, and additionally evaluated the ranking results against expert opinions to ensure their accuracy. The results showed strong agreement among the three methods, consistently ranking Salmonella non-Typhi and Cronobacter spp. and Shiga-toxin-producing Escherichia coli as the top MH risks in infant formulae, with minor deviations. When MHs were ranked after an initial hazard identification step, all three methods produced nearly identical MH rankings, reinforcing the reliability of the ranking steps and the selected criteria. Notably, the risk value and MCDA methods provided more informative MH rankings compared to the risk scoring method. The risk value and risk scoring methods were implemented into an online tool, called the MIcrobiological hazards risk RAnking decision support system (Mira-DSS), available at https://foodmicrobiologywur.shinyapps.io/MIcrobial_hazards_RAnking/. In conclusion, our framework enables the ranking of MH risks, facilitating intervention comparisons and resource allocations to mitigate MH risks in infant foods, with potential applicability to broader food categories.
确保食品安全,特别是对于婴儿和幼儿等弱势群体,需要识别和优先考虑食物链中的潜在危害。我们之前开发了一个基于网络的决策支持系统(DSS),通过结构化的五步流程来识别婴儿和幼儿食品中的特定微生物危害(MH)。本研究通过引入系统风险排名(RR)步骤,使用七个标准对 MH 风险进行排名,进一步扩展了该框架。这七个标准是:过程存活、再污染、生长机会、膳食准备、危害-食品关联性证据、欧盟婴幼儿的食物消费习惯和 MH 严重程度。每个标准都有半定量或定量评分或风险值,通过三种聚合方法为最终 MH 风险计算做出贡献:半定量风险评分、半定量风险值和超越多准则决策分析(MCDA)。为了验证标准和排名方法,我们进行了一项案例研究,对婴儿配方奶粉中的 MH 风险进行了排名,比较了三种风险排名方法的结果,并根据专家意见对排名结果进行了评估,以确保其准确性。结果表明,三种方法之间存在很强的一致性,一致地将非伤寒沙门氏菌和克罗诺杆菌属和产志贺毒素的大肠杆菌列为婴儿配方奶粉中 MH 风险的前两名,略有偏差。当在初始危害识别步骤之后对 MH 进行排名时,所有三种方法都产生了几乎相同的 MH 排名,从而增强了排名步骤和选定标准的可靠性。值得注意的是,风险值和 MCDA 方法提供了比风险评分方法更具信息量的 MH 排名。风险值和风险评分方法已被实施到一个在线工具中,称为微生物危害风险排名决策支持系统(Mira-DSS),可在 https://foodmicrobiologywur.shinyapps.io/MIcrobial_hazards_RAnking/ 上访问。总之,我们的框架使 MH 风险的排名成为可能,促进了干预措施的比较和资源的分配,以减轻婴儿食品中的 MH 风险,并且具有在更广泛的食品类别中应用的潜力。