Suppr超能文献

可持续合成途径:木质纤维素生物质中的细菌纳米纤维素用于循环经济倡议。

Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives.

机构信息

Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil.

Department of Chemical Engineering, Federal University of Pernambuco, Zip Code: 50100-100, Recife, Pernambuco, Brazil.

出版信息

Food Res Int. 2024 Sep;192:114843. doi: 10.1016/j.foodres.2024.114843. Epub 2024 Jul 31.

Abstract

The hydrothermal pretreatment process stands out as a pivotal step in breaking down the hemicellulosic fraction of lignocellulosic biomasses, such as sugarcane bagasse and eucalyptus sawdust. This pretreatment step is crucial for preparing these materials for subsequent processes, particularly in food applications. This technique aims to disintegrate plant wall components like cellulose, hemicellulose, and lignin, and facilitating access in later phases such as enzymatic hydrolysis, and ultimately making fermentable sugars available. In this study, sugarcane bagasse and eucalyptus sawdust biomass underwent hydrothermal pretreatment at specific conditions, yielding two key components: dry biomass and hemicellulose liquor. The primary focus was to assess the impact of hydrothermal pretreatment followed by enzymatic hydrolysis, using the Celic Ctec III enzyme cocktail, to obtain fermentable sugars. These sugars were then transformed into membranes via strain Gluconacetobacter xylinus bacterial biosynthesis. Notably, the addition of a nitrogen source significantly boosted production to 14.76 g/ in hydrolyzed sugarcane bagasse, underscoring its vital role in bacterial metabolism. Conversely, in hydrolyzed eucalyptus, nitrogen source inclusion unexpectedly decreased yield, highlighting the intricate interactions in fermentation media and the pivotal influence of nitrogen supplementation. Characterization of membranes obtained in synthetic and hydrolyzed media through techniques such as FEG-SEM, FTIR, and TGA, followed by mass balance assessment, gauged their viability on an industrial scale. This comprehensive study aimed not only to understand the effects of pretreatment and enzymatic hydrolysis but to also evaluate the applicability and sustainability of the process on a large scale, providing crucial insights into its feasibility and efficiency in practical food-related scenarios, utilizing nanocellulose bacterial (BNC) as a key component.

摘要

水热预处理过程是分解木质纤维素生物质中半纤维素部分的关键步骤,例如甘蔗渣和桉树木屑。 该预处理步骤对于为后续过程(特别是在食品应用中)准备这些材料至关重要。 该技术旨在分解植物细胞壁成分,例如纤维素、半纤维素和木质素,并在后续阶段(例如酶水解)中提供便利,最终使可发酵糖可用。 在这项研究中,甘蔗渣和桉树木屑生物质在特定条件下进行水热预处理,产生两种主要成分:干生物质和半纤维素液。 主要重点是评估水热预处理后使用 Celic Ctec III 酶混合物进行酶水解以获得可发酵糖的影响。 然后,这些糖通过菌株 Gluconacetobacter xylinus 细菌生物合成转化为膜。 值得注意的是,添加氮源可将水解甘蔗渣的产量显着提高到 14.76 g/L,这突显了其在细菌代谢中的重要作用。 相反,在水解桉树中,氮源的加入出人意料地降低了产量,这突出了发酵培养基中复杂的相互作用以及氮源补充的关键影响。 通过 FEG-SEM、FTIR 和 TGA 等技术对合成和水解培养基中获得的膜进行特性分析,并进行质量平衡评估,评估了其在工业规模上的可行性。 这项综合研究不仅旨在了解预处理和酶水解的影响,还评估了该过程在大规模应用中的适用性和可持续性,为其在实际食品相关场景中的可行性和效率提供了关键见解,利用纳米纤维素细菌(BNC)作为关键成分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验