Suppr超能文献

利用高光谱成像、可见光照相和 X 射线成像以及多源数据融合策略,快速、无损地鉴定人参的产地。

Rapid and non-destructive identification of Panax ginseng origins using hyperspectral imaging, visible light imaging, and X-ray imaging combined with multi-source data fusion strategies.

机构信息

College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, China.

Tianjin Modern Innovative TCM Technology Co., Ltd., Tianjin 300380, China; National Innovation Center for Modern Chinese Medicine, Tianjin 300392, China.

出版信息

Food Res Int. 2024 Sep;192:114758. doi: 10.1016/j.foodres.2024.114758. Epub 2024 Jul 14.

Abstract

The geographical origin of Panax ginseng significantly influences its nutritional value and chemical composition, which in turn affects its market price. Traditional methods for analyzing these differences are often time-consuming and require substantial quantities of reagents, rendering them inefficient. Therefore, hyperspectral imaging (HSI) in conjunction with X-ray technology were used for the swift and non-destructive traceability of Panax ginseng origin. Initially, outlier samples were effectively rejected by employing a combined isolated forest algorithm and density peak clustering (DPC) algorithm. Subsequently, random forest (RF) and support vector machine (SVM) classification models were constructed using hyperspectral spectral data. These models were further optimized through the application of 72 preprocessing methods and their combinations. Additionally, to enhance the model's performance, four variable screening algorithms were employed: SelectKBest, genetic algorithm (GA), least absolute shrinkage and selection operator (LASSO), and permutation feature importance (PFI). The optimized model, utilizing second derivative, auto scaling, permutation feature importance, and support vector machine (2nd Der-AS-PFI-SVM), achieved a prediction accuracy of 93.4 %, a Kappa value of 0.876, a Brier score of 0.030, an F1 score of 0.932, and an AUC of 0.994 on an independent prediction set. Moreover, the image data (including color information and texture information) extracted from color and X-ray images were used to construct classification models and evaluate their performance. Among them, the SVM model constructed using texture information from X -ray images performed the best, and it achieved a prediction accuracy of 63.0 % on the validation set, with a Brier score of 0.181, an F1 score of 0.518, and an AUC of 0.553. By implementing mid-level fusion and high-level data fusion based on the Stacking strategy, it was found that the model employing a high-level fusion of hyperspectral spectral information and X-ray images texture information significantly outperformed the model using only hyperspectral spectral information. This advanced model attained a prediction accuracy of 95.2 %, a Kappa value of 0.912, a Brier score of 0.027, an F1 score of 0.952, and an AUC of 0.997 on the independent prediction set. In summary, this study not only provides a novel technical path for fast and non-destructive traceability of Panax ginseng origin, but also demonstrates the great potential of the combined application of HSI and X-ray technology in the field of traceability of both medicinal and food products.

摘要

人参的地理起源显著影响其营养价值和化学成分,进而影响其市场价格。传统的分析这些差异的方法通常耗时且需要大量的试剂,效率低下。因此,采用高光谱成像(HSI)结合 X 射线技术对人参的起源进行快速无损溯源。首先,通过结合孤立森林算法和密度峰聚类(DPC)算法有效地剔除异常样本。然后,使用高光谱光谱数据构建随机森林(RF)和支持向量机(SVM)分类模型。通过应用 72 种预处理方法及其组合对这些模型进行了进一步优化。此外,为了提高模型的性能,采用了四种变量筛选算法:SelectKBest、遗传算法(GA)、最小绝对值收缩和选择算子(LASSO)和排列特征重要性(PFI)。利用二阶导数、自动缩放、排列特征重要性和支持向量机(2nd Der-AS-PFI-SVM)对优化模型进行优化,在独立预测集上的预测准确率为 93.4%,Kappa 值为 0.876,Brier 分数为 0.030,F1 分数为 0.932,AUC 为 0.994。此外,从彩色和 X 射线图像中提取的图像数据(包括颜色信息和纹理信息)被用于构建分类模型并评估其性能。其中,利用 X 射线图像纹理信息构建的 SVM 模型表现最佳,在验证集上的预测准确率为 63.0%,Brier 分数为 0.181,F1 分数为 0.518,AUC 为 0.553。通过基于堆叠策略实施中层次融合和高层次数据融合,发现使用高光谱光谱信息和 X 射线图像纹理信息的高层次融合的模型明显优于仅使用高光谱光谱信息的模型。该先进模型在独立预测集上的预测准确率为 95.2%,Kappa 值为 0.912,Brier 分数为 0.027,F1 分数为 0.952,AUC 为 0.997。总之,本研究不仅为快速无损的人参起源溯源提供了一种新的技术途径,而且还展示了 HSI 和 X 射线技术在药品和食品溯源领域的联合应用的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验