Suppr超能文献

基于高光谱成像和机器学习的不同琼脂培养基上细菌菌落的统一分类。

Unified Classification of Bacterial Colonies on Different Agar Media Based on Hyperspectral Imaging and Machine Learning.

机构信息

Department of Mechatronics Engineering, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.

Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.

出版信息

Molecules. 2020 Apr 14;25(8):1797. doi: 10.3390/molecules25081797.

Abstract

A universal method by considering different types of culture media can enable convenient classification of bacterial species. The study combined hyperspectral technology and versatile chemometric algorithms to achieve the rapid and non-destructive classification of three kinds of bacterial colonies (, and ) cultured on three kinds of agar media (Luria-Bertani agar (LA), plate count agar (PA) and tryptone soy agar (TSA)). Based on the extracted spectral data, partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) were employed to established classification models. The parameters of SVM models were optimized by comparing genetic algorithm (GA), particle swarm optimization (PSO) and grasshopper optimization algorithm (GOA). The best classification model was GOA-SVM, where the overall correct classification rates (OCCRs) for calibration and prediction of the full-wavelength GOA-SVM model were 99.45% and 98.82%, respectively, and the Kappa coefficient for prediction was 0.98. For further investigation, the CARS, SPA and GA wavelength selection methods were used to establish GOA-SVM simplified model, where CARS-GOA-SVM was optimal in model accuracy and stability with the corresponding OCCRs for calibration and prediction and the Kappa coefficients of 99.45%, 98.73% and 0.98, respectively. The above results demonstrated that it was feasible to classify bacterial colonies on different agar media and the unified model provided a continent and accurate way for bacterial classification.

摘要

一种通用的方法,通过考虑不同类型的培养基,可以方便地对细菌种类进行分类。该研究结合了高光谱技术和多功能化学计量算法,实现了三种在三种琼脂培养基(Luria-Bertani 琼脂(LA)、平板计数琼脂(PA)和胰蛋白胨大豆琼脂(TSA))上培养的细菌菌落(、和)的快速和非破坏性分类。基于提取的光谱数据,采用偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)建立分类模型。通过比较遗传算法(GA)、粒子群优化(PSO)和草蜢优化算法(GOA),优化了 SVM 模型的参数。GOA-SVM 是最佳的分类模型,全波长 GOA-SVM 模型的校准和预测的总体正确分类率(OCCR)分别为 99.45%和 98.82%,预测的 Kappa 系数为 0.98。为了进一步研究,采用 CARS、SPA 和 GA 波长选择方法建立 GOA-SVM 简化模型,其中 CARS-GOA-SVM 在模型准确性和稳定性方面表现最佳,其对应的校准和预测的 OCCR 以及 Kappa 系数分别为 99.45%、98.73%和 0.98。上述结果表明,对不同琼脂培养基上的细菌菌落进行分类是可行的,统一模型为细菌分类提供了一种通用且准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8af/7221630/a833d74367f4/molecules-25-01797-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验