Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India; Department of Food Technology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh 522213, India.
Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India.
Food Res Int. 2024 Sep;192:114804. doi: 10.1016/j.foodres.2024.114804. Epub 2024 Jul 20.
This study investigated spray drying a method for microencapsulating Lacticaseibacillus rhamnosus GG using a gastrointestinal resistant composite matrix. An encapsulate composite matrix comprising green banana flour (GBF) blended with maltodextrin (MD) and gum arabic (GA). The morphology of resulted microcapsules revealed a near-spherical shape with slight dents and no surface cracks. Encapsulation efficiency and product yield varied significantly among the spray-dried microencapsulated probiotic powder samples (SMPPs). The formulation with the highest GBF concentration (FIV) exhibited maximum post-drying L. rhamnosus GG viability (12.57 ± 0.03 CFU/g) and best survivability during simulated gastrointestinal digestion (9.37 ± 0.05 CFU/g). Additionally, glass transition temperature (T) analysis indicated good thermal stability of SMPPs (69.3 - 92.9 ℃), while Fourier Transform infrared (FTIR) spectroscopy confirmed the structural integrity of functional groups within microcapsules. The SMPPs characterization also revealed significant variation in moisture content, water activity, viscosity, and particle size. Moreover, SMPPs exhibited differences in total phenolic and flavonoid, along with antioxidant activity and color values throughout the study. These results suggested that increasing GBF concentration within the encapsulating matrix, while reducing the amount of other composite materials, may offer enhanced protection to L. rhamnosus GG during simulated gastrointestinal conditions, likely due to the gastrointestinal resistance properties of GBF.
本研究采用胃肠道耐复合基质喷雾干燥法对鼠李糖乳杆菌 GG 进行微胶囊化。包埋复合基质由绿香蕉粉(GBF)与麦芽糊精(MD)和阿拉伯胶(GA)混合而成。所得微胶囊的形态呈现出近球形,略有凹陷,无表面裂纹。喷雾干燥微囊化益生菌粉末样品(SMPP)的包埋效率和产率差异显著。GBF 浓度最高的配方(FIV)表现出最大的干燥后 L. rhamnosus GG 活菌数(12.57±0.03 CFU/g)和模拟胃肠道消化过程中的最佳存活率(9.37±0.05 CFU/g)。此外,玻璃化转变温度(T)分析表明 SMPP 具有良好的热稳定性(69.3-92.9℃),而傅里叶变换红外(FTIR)光谱证实了微胶囊内功能基团的结构完整性。SMPP 的特性还表明,在整个研究过程中,水分含量、水分活度、粘度和粒径均有显著差异。此外,SMPP 还表现出总酚和类黄酮、抗氧化活性和颜色值的差异。这些结果表明,在包埋基质中增加 GBF 浓度,同时减少其他复合材料的用量,可能会在模拟胃肠道条件下对 L. rhamnosus GG 提供更好的保护,这可能归因于 GBF 的胃肠道耐受力。