Qian Han, Peng Puguang, Fan Hongzhao, Yang Zhe, Yang Lixue, Zhou Yanguang, Tan Dan, Yang Feiyao, Willatzen Morten, Amaratunga Gehan, Wang Zhonglin, Wei Di
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202414984. doi: 10.1002/anie.202414984. Epub 2024 Oct 16.
Osmotic energy from the ocean has been thoroughly studied, but that from saline-alkali lakes is constrained by the ion-exchange membranes due to the trade-off between permeability and selectivity, stemming from the unfavorable structure of nanoconfined channels, pH tolerance, and chemical stability of the membranes. Inspired by the rapid water transport in xylem conduit structures, we propose a horizontal transport MXene (H-MXene) with ionic sequential transport nanochannels, designed to endure extreme saline-alkali conditions while enhancing ion selectivity and permeability. The H-MXene demonstrates superior ion conductivity of 20.67 S m in 1 M NaCl solution and a diffusion current density of 308 A m at a 10-fold salinity gradient of NaCl solution, significantly outperforming the conventional vertical transport MXene (V-MXene). Both experimental and simulation studies have confirmed that H-MXene represents a novel approach to circumventing the permeability-selectivity trade-off. Moreover, it exhibits efficient ion transport capabilities, addressing the gap in saline-alkali osmotic power generation.
来自海洋的渗透能已得到充分研究,但来自盐碱湖的渗透能却因离子交换膜而受到限制,这是由于纳米受限通道的不利结构、膜的pH耐受性和化学稳定性导致的渗透率和选择性之间的权衡。受木质部导管结构中快速水运输的启发,我们提出了一种具有离子顺序传输纳米通道的水平传输MXene(H-MXene),旨在耐受极端盐碱条件,同时提高离子选择性和渗透率。H-MXene在1 M NaCl溶液中表现出20.67 S m的优异离子电导率,在10倍NaCl溶液盐度梯度下的扩散电流密度为308 A m,显著优于传统的垂直传输MXene(V-MXene)。实验和模拟研究均证实,H-MXene是一种规避渗透率-选择性权衡的新方法。此外,它还展现出高效的离子传输能力,填补了盐碱渗透发电方面的空白。