School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Environ Sci Technol. 2022 Jun 21;56(12):8964-8974. doi: 10.1021/acs.est.2c01765. Epub 2022 Jun 1.
Two-dimensional (2D) material-based membranes are promising candidates for various separation applications. However, the further enhancement of membrane ion conductance is difficult, and the regulation of membrane ion selectivity remains a challenge. Here, we demonstrate the facile fabrication of MXene composite membranes by incorporating spacing agents that contain SOH groups into the MXene interlayers. The synthesized membrane shows enhanced ion conductance and ion selectivity. Subsequently, the membranes are utilized for salinity gradient power (SGP) generation and lithium-ion (Li) recovery. The membrane containing poly(sodium 4-styrenesulfonate) (PSS) as the spacing agent shows a much higher power density for SGP generation as compared to the pristine MXene membrane. Using artificial seawater and river water, the power density reaches 1.57 W/m with a testing area of 0.24 mm. Also, the same membrane shows Li/Na and Li/K selectivities of 2.5 and 3.2, respectively. The incorporation of PSS increases both the size and charge density of the nanochannels inside the membrane, which is beneficial for ion conduction. In addition, the density functional theory (DFT) calculation shows that the binding energy between Li and the SOH group is lower than other alkali ion metals, and this might be one major reason why the membrane possesses high Li selectivity. This study demonstrates that incorporating spacing agents into the 2D material matrix is a viable strategy to enhance the performance of the 2D material-based membranes. The results from this study can inspire new membrane designs for emerging applications including energy harvesting and monovalent ion recovery.
二维(2D)材料基膜是各种分离应用的有前途的候选材料。然而,进一步提高膜离子电导率具有挑战性,调节膜离子选择性仍然是一个挑战。在这里,我们通过将含有 SOH 基团的间隔剂纳入 MXene 层间,展示了 MXene 复合膜的简便制备方法。所合成的膜表现出增强的离子电导率和离子选择性。随后,我们将这些膜用于盐度梯度能(SGP)的产生和锂离子(Li)的回收。含有聚(4-苯乙烯磺酸钠)(PSS)作为间隔剂的膜在 SGP 产生方面表现出比原始 MXene 膜更高的功率密度。使用人工海水和河水,在测试面积为 0.24 毫米的情况下,功率密度达到 1.57 W/m。此外,相同的膜对于 Li/Na 和 Li/K 的选择性分别为 2.5 和 3.2。PSS 的掺入增加了膜内纳米通道的尺寸和电荷密度,这有利于离子传导。此外,密度泛函理论(DFT)计算表明,Li 与 SOH 基团之间的结合能低于其他碱金属离子,这可能是膜具有高 Li 选择性的主要原因之一。本研究表明,将间隔剂纳入 2D 材料基质是增强 2D 材料基膜性能的可行策略。本研究的结果可以为新兴应用(包括能量收集和单价离子回收)的新型膜设计提供启示。