Tillmann Anne, Turgut Ferhat, Munk Marion R
Augenarzt Praxisgemeinschaft Gutblick, Pfäffikon, Switzerland.
Department of Ophthalmology, Stadtspital Zürich, Zürich, Switzerland.
Eye (Lond). 2025 Apr;39(5):835-844. doi: 10.1038/s41433-024-03295-8. Epub 2024 Aug 15.
Optical coherence tomography angiography (OCTA) holds promise in enhancing the care of various retinal vascular diseases, including neovascular age-related macular degeneration (nAMD). Given nAMD's vascular nature and the distinct vasculature of macular neovascularization (MNV), detailed analysis is expected to gain significance. Research in artificial intelligence (AI) indicates that en-face OCTA views may offer superior predictive capabilities than spectral domain optical coherence tomography (SD-OCT) images, highlighting the necessity to identify key vascular parameters. Analyzing vasculature could facilitate distinguishing MNV subtypes and refining diagnosis. Future studies correlating OCTA parameters with clinical data might prompt a revised classification system. However, the combined utilization of qualitative and quantitative OCTA biomarkers to enhance the accuracy of diagnosing disease activity remains underdeveloped. Discrepancies persist regarding the optimal biomarker for indicating an active lesion, warranting comprehensive prospective studies for validation. AI holds potential in extracting valuable insights from the vast datasets within OCTA, enabling researchers and clinicians to fully exploit its OCTA imaging capabilities. Nevertheless, challenges pertaining to data quantity and quality pose significant obstacles to AI advancement in this field. As OCTA gains traction in clinical practice and data volume increases, AI-driven analysis is expected to further augment diagnostic capabilities.
光学相干断层扫描血管造影(OCTA)有望改善包括新生血管性年龄相关性黄斑变性(nAMD)在内的各种视网膜血管疾病的治疗。鉴于nAMD的血管性质以及黄斑新生血管(MNV)独特的脉管系统,详细分析有望变得更加重要。人工智能(AI)研究表明,与光谱域光学相干断层扫描(SD-OCT)图像相比,OCTA的表面视图可能具有更强的预测能力,这凸显了识别关键血管参数的必要性。分析脉管系统有助于区分MNV亚型并完善诊断。未来将OCTA参数与临床数据相关联的研究可能会促使修订分类系统。然而,定性和定量OCTA生物标志物联合使用以提高疾病活动诊断准确性的研究仍不充分。关于指示活动性病变的最佳生物标志物仍存在差异,需要进行全面的前瞻性研究以进行验证。人工智能有潜力从OCTA中的大量数据集中提取有价值的见解,使研究人员和临床医生能够充分利用其OCTA成像能力。尽管如此,与数据数量和质量相关的挑战对该领域的人工智能发展构成了重大障碍。随着OCTA在临床实践中越来越受到关注且数据量不断增加,预计人工智能驱动的分析将进一步增强诊断能力。
Cochrane Database Syst Rev. 2024-10-17
Graefes Arch Clin Exp Ophthalmol. 2025-3
Cochrane Database Syst Rev. 2016-2-8
Exp Eye Res. 2025-7-15
Prog Retin Eye Res. 2023-11
Diagnostics (Basel). 2022-11-15
Invest Ophthalmol Vis Sci. 2022-10-3