Jafter Orein F, Lee Sol, Park Jongseong, Cabanetos Clément, Lungerich Dominik
Center for Nanomedicine, Institute for Basic Science (IBS), 03722, Seoul, South Korea.
Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 03722, Seoul, South Korea.
Angew Chem Int Ed Engl. 2024 Nov 25;63(48):e202409731. doi: 10.1002/anie.202409731. Epub 2024 Oct 16.
The rising prospects of mechanochemically assisted syntheses hold promise for both academia and industry, yet they face challenges in understanding and, therefore, anticipating respective reaction kinetics. Particularly, dependencies based on variations in milling equipment remain little understood and globally overlooked. This study aims to address this issue by identifying critical parameters through kinematic models, facilitating the reproducibility of mechanochemical reactions across the most prominent mills in laboratory settings, namely planetary and mixer mills. Through a series of selected experiments replicating major classes of organic, organometallic, transition metal-catalyzed, and inorganic reactions from literature, we rationalize the independence of kinematic parameters on reaction kinetics when the accumulated energy criterion is met. As a step forward and to facilitate the practicability of our findings, we provide a freely accessible online tool that allows the calculation of respective energy parameters for different planetary and mixer mills. Our work advances the current understanding of mechanochemistry and lays the foundation for future rational exploration in this rapidly evolving field.
机械化学辅助合成的前景日益广阔,为学术界和工业界都带来了希望,但它们在理解并因此预测各自的反应动力学方面面临挑战。特别是,基于研磨设备变化的依赖性仍鲜为人知且被全球忽视。本研究旨在通过运动学模型识别关键参数来解决这一问题,从而促进在实验室环境中最著名的磨机(即行星磨机和搅拌磨机)上机械化学反应的可重复性。通过一系列选定的实验,复制文献中主要类别的有机、有机金属、过渡金属催化和无机反应,我们论证了在满足累积能量标准时运动学参数与反应动力学的独立性。作为向前迈出的一步并为便于我们研究结果的实用性,我们提供了一个免费的在线工具,可用于计算不同行星磨机和搅拌磨机的各自能量参数。我们的工作推动了当前对机械化学的理解,并为这个快速发展的领域未来的合理探索奠定了基础。