Lim Jungmoon, Heo Su Jin, Jung Min, Kim Taehun, Byeon Junsung, Park HongJu, Jang Jae Eun, Hong John, Moon Janghyuk, Pak Sangyeon, Cha SeungNam
Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea.
Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea.
Small. 2024 Dec;20(49):e2402272. doi: 10.1002/smll.202402272. Epub 2024 Aug 15.
Despite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS catalysts passivated with an atomically thin hexagonal boron nitride (h-BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra-high current density (500 mA cm⁻ over 11 h) and super stable (64 h at 150 mA cm⁻) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h-BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h-BN covered MoS catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS catalysts having long-term stability at high-current operation.
尽管二维催化剂在苛刻的电解质溶液中的稳定性很重要,但大多数研究都集中在提高二硫化钼(MoS)催化剂的催化性能上,而不是析氢的可持续性。在先前的研究中,报道了MoS晶体的脆弱性,即水分和氧分子会导致MoS晶体氧化,加速晶体结构的降解。因此,催化稳定性的优化对于二维催化剂的实际应用至关重要。在此,有人提出用原子级薄的六方氮化硼(h-BN)层钝化的单层MoS催化剂可以有效地维持析氢反应(HER),并展示出超高电流密度(11小时内超过500 mA cm⁻²)和超稳定(150 mA cm⁻²下64小时)的催化性能。密度泛函理论(DFT)计算进一步证实,原子级薄的h-BN层有效地阻止了水/酸分子的直接吸附,同时允许质子被吸附/穿透。质子的选择性穿透和晶体结构降解的防止导致h-BN覆盖的MoS催化剂中催化活性的维持和催化稳定性的最大化。这些发现为二维MoS催化剂在高电流操作下具有长期稳定性的实际应用提供了一个有希望的机会。