Suppr超能文献

利用神经网络和遗传数据刻画美国大陆野猪的迁徙。

Characterizing feral swine movement across the contiguous United States using neural networks and genetic data.

机构信息

United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA.

Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

出版信息

Mol Ecol. 2024 Sep;33(17):e17489. doi: 10.1111/mec.17489. Epub 2024 Aug 15.

Abstract

Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.

摘要

全球化导致物种频繁离开其自然栖息地。其中一些物种具有很强的入侵性,能够深刻改变入侵生态系统。野猪(Sus scrofa × domesticus)被认为是最具破坏性的入侵物种之一,除南极洲外,各大洲都有其种群分布。在美国,野猪对农作物造成了广泛的破坏,破坏了本地生态系统,并传播了疾病。人为有目的地将野猪转移,导致它们在过去 30 年中迅速扩张。由于野猪种群可能通过未经记录的小规模释放而建立或增加,因此有目的地引入野猪的模式并没有得到很好的描述。我们利用一个包含 18789 个样本的广泛基因组数据库,这些样本在 35141 个单核苷酸多态性(SNP)上进行了基因分型,利用深度神经网络在连续的美国大陆上识别了被转移的野猪。我们将 20%(3364/16774)的采样动物分类为已被转移,并使用网络分析中的中心性度量来描述转移的一般模式。这些发现揭示了野猪广泛的超出其扩散能力的迁徙,包括那些预测起源地距离采样地点超过 1000 公里的个体。我们的研究揭示了美国境内以及从加拿大到美国北部地区野猪人为介导迁徙的模式。此外,我们的研究验证了神经网络在研究入侵物种传播方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验