Leegwater Emiel, Baidjoe Lauren, Wilms Erik B, Visser Leo G, Touw Daniel J, de Winter Brenda C M, de Boer Mark G J, van Paassen Judith, van den Berg Charlotte H S B, van Prehn Joffrey, van Gelder Teun, Moes Dirk Jan A R
Department of Hospital Pharmacy, Haga Teaching Hospital, The Hague, The Netherlands.
Apotheek Haagse Ziekenhuizen, The Hague, The Netherlands.
Clin Pharmacol Ther. 2025 Jan;117(1):184-192. doi: 10.1002/cpt.3421. Epub 2024 Aug 15.
The goal of the study was to describe the population pharmacokinetics of trimethoprim, sulfamethoxazole, and N-acetyl sulfamethoxazole in hospitalized patients. Furthermore, this study used the model to optimize dosing regimens of cotrimoxazole for Pneumocystis jirovecii pneumonia and in patients with renal insufficiency or with continuous renal replacement therapy (CRRT). This was a retrospective multicenter observational cohort study based on therapeutic drug monitoring (TDM) data from hospitalized patients treated with cotrimoxazole. We developed two population pharmacokinetic (POPPK) models: a model of trimethoprim and an integrated model with both sulfamethoxazole and N-acetyl sulfamethoxazole concentrations. Monte Carlo simulations were performed to determine the optimal dosing regimen. A total of 348 measurements from 168 patients were available. The estimated glomerular filtration rate (eGFR) and CRRT were included as covariates on the clearance of all three compounds. Cotrimoxazole TID 1,920 mg and b.i.d. 2,400 mg led to sufficient exposure for infections with P. jirovecii in patients without renal insufficiency. To reach equivalent exposure, a dose reduction of 33.3% is needed in patients with an eGFR of 10 mL/minute/1.73 m and of 16.7% for an eGFR of 30 mL/minute/1.73 m. N-acetyl sulfamethoxazole accumulates in patients with a reduced eGFR. CRRT increased the clearance of sulfamethoxazole, but not trimethoprim or N-acetyl sulfamethoxazole, compared with the median clearance in the population. Doubling the sulfamethoxazole dose is needed for patients on CRRT to reach equivalent exposure.
该研究的目的是描述住院患者中甲氧苄啶、磺胺甲恶唑和N - 乙酰磺胺甲恶唑的群体药代动力学。此外,本研究使用该模型优化复方新诺明治疗耶氏肺孢子菌肺炎以及肾功能不全或接受持续肾脏替代治疗(CRRT)患者的给药方案。这是一项基于接受复方新诺明治疗的住院患者治疗药物监测(TDM)数据的回顾性多中心观察性队列研究。我们建立了两个群体药代动力学(POPPK)模型:一个是甲氧苄啶模型,另一个是包含磺胺甲恶唑和N - 乙酰磺胺甲恶唑浓度的综合模型。进行蒙特卡洛模拟以确定最佳给药方案。共有来自168名患者的348次测量数据。估计肾小球滤过率(eGFR)和CRRT被纳入作为这三种化合物清除率的协变量。对于没有肾功能不全的患者,每日三次服用1920 mg复方新诺明和每日两次服用2400 mg复方新诺明可使耶氏肺孢子菌感染获得足够的暴露量。对于eGFR为10 mL/分钟/1.73 m²的患者,要达到同等暴露量需要将剂量降低33.3%,对于eGFR为30 mL/分钟/1.73 m²的患者则需要降低16.7%。N - 乙酰磺胺甲恶唑在eGFR降低的患者中会蓄积。与总体人群的中位清除率相比,CRRT增加了磺胺甲恶唑的清除率,但未增加甲氧苄啶或N - 乙酰磺胺甲恶唑的清除率。接受CRRT的患者需要将磺胺甲恶唑剂量加倍才能达到同等暴露量。