Abolfath Ramin, Helo Yusuf, Bronk Lawrence, Carabe Alejandro, Grosshans David, Mohan Radhe
Department of Radiation Physics and Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 75031, USA.
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Eur Phys J D At Mol Opt Phys. 2019 Mar;73(3). doi: 10.1140/epjd/e2019-90263-5. Epub 2019 Mar 28.
We employ a multi-scale mechanistic approach built upon our recent phenomenological/computational methodologies [R. Abolfath et al., Sci. Rep. , 8340 (2017)] to investigate radiation induced cell toxicities and deactivation mechanisms as a function of linear energy transfer in hadron therapy. Our theoretical model consists of a system of Markov chains in microscopic and macroscopic spatio-temporal landscapes, i.e., stochastic birth-death processes of cells in millimeter-scale colonies that incorporates a coarse-grained driving force to account for microscopic radiation induced damage. The coupling, hence the driving force in this process, stems from a nano-meter scale radiation induced DNA damage that incorporates the enzymatic end-joining repair and mis-repair mechanisms. We use this model for global fitting of the high-throughput and high accuracy clonogenic cell-survival data acquired under exposure of the therapeutic scanned proton beams, the experimental design that considers -H2AX as the biological endpoint and exhibits maximum observed achievable dose and LET, beyond which the majority of the cells undergo collective biological deactivation processes. An estimate to optimal dose and LET calculated from tumor control probability by extension to ~10 cells per mm-size voxels is presented. We attribute the increase in degree of complexity in chromosome aberration to variabilities in the observed biological responses as the beam linear energy transfer (LET) increases, and verify consistency of the predicted cell death probability with the in vitro cell survival assay of approximately 100 non-small cell lung cancer (NSCLC) cells. The present model provides an interesting interpretation to variabilities in and indices via perturbative expansion of the cell survival fraction (SF) in terms of specific and lineal energies, and , corresponding to continuous transitions in pair-wise to ternary, quaternary and more complex recombination of broken chromosomes from the entrance to the end of the range of proton beam.
我们采用了一种基于我们最近的唯象学/计算方法[R. Abolfath等人,《科学报告》,8340 (2017)]构建的多尺度机理方法,来研究强子治疗中作为线能量转移函数的辐射诱导细胞毒性和失活机制。我们的理论模型由微观和宏观时空景观中的马尔可夫链系统组成,即毫米级细胞集落中细胞的随机生死过程,该过程纳入了一个粗粒化驱动力以解释微观辐射诱导的损伤。这种耦合,也就是这个过程中的驱动力,源于纳米级辐射诱导的DNA损伤,其中纳入了酶促末端连接修复和错配修复机制。我们使用这个模型对在治疗性扫描质子束照射下获得的高通量和高精度克隆形成细胞存活数据进行全局拟合,该实验设计将 -H2AX 视为生物学终点,并展示了观察到的最大可实现剂量和线能量转移,超过这个剂量和线能量转移,大多数细胞会经历集体生物学失活过程。给出了通过扩展到每立方毫米大小体素约 10 个细胞,根据肿瘤控制概率计算出的最佳剂量和线能量转移的估计值。我们将染色体畸变复杂性程度的增加归因于随着束线能量转移(LET)增加观察到的生物学反应的变异性,并验证了预测的细胞死亡概率与大约 100 个非小细胞肺癌(NSCLC)细胞的体外细胞存活测定结果的一致性。本模型通过根据特定能量和线能量对细胞存活分数(SF)进行微扰展开,为 和 指数的变异性提供了一个有趣的解释, 和 分别对应于从质子束入射到射程末端,断裂染色体从成对到三元、四元及更复杂重组的连续转变。