Verkhovtsev Alexey, Surdutovich Eugene, Solov'yov Andrey V
MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main, Germany.
Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain.
Sci Rep. 2016 Jun 14;6:27654. doi: 10.1038/srep27654.
Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.
离子束疗法推动了癌症治疗的进步,提供了实现精确剂量定位的可能性,从而使肿瘤内的细胞杀伤最大化。只有充分理解离子辐照导致细胞致命损伤的基本机制,这种疗法的全部潜力才能得以实现。关键问题在于,是否能够基于与纳米尺度上离子 - 介质相互作用相关的物理和化学效应,定量预测离子辐射引起的宏观生物学效应。我们证明,基于现象的离子辐射损伤评估多尺度方法对这个问题给出了肯定的答案。我们将此方法应用于众多实验,这些实验针对不同细胞系和条件获得了存活曲线。与其他本质上基于经验评估电离辐射宏观效应的方法不同,多尺度方法基于与介质电离、次级粒子传输、化学相互作用、生物损伤的热 - 机械途径以及细胞存活的启发式生物学标准相关的物理效应来预测生物损伤。我们预计这种方法将极大地推动离子束癌症治疗的实际改进以及更高效治疗方案的开发。