Barty Christopher P J, Algots J Martin, Amador Alexander J, Barty James C R, Betts Shawn M, Castañeda Marcelo A, Chu Matthew M, Daley Michael E, De Luna Lopez Ricardo A, Diviak Derek A, Effarah Haytham H, Feliciano Roberto, Garcia Adan, Grabiel Keith J, Griffin Alex S, Hartemann Frederic V, Heid Leslie, Hwang Yoonwoo, Imeshev Gennady, Jentschel Michael, Johnson Christopher A, Kinosian Kenneth W, Lagzda Agnese, Lochrie Russell J, May Michael W, Molina Everardo, Nagel Christopher L, Nagel Henry J, Peirce Kyle R, Peirce Zachary R, Quiñonez Mauricio E, Raksi Ferenc, Ranganath Kelanu, Reutershan Trevor, Salazar Jimmie, Schneider Mitchell E, Seggebruch Michael W L, Yang Joy Y, Yeung Nathan H, Zapata Collette B, Zapata Luis E, Zepeda Eric J, Zhang Jingyuan
Lumitron Technologies, Inc., Irvine, CA, United States.
Physics and Astronomy Department, University of California, Irvine, CA, United States.
ArXiv. 2025 Jan 2:arXiv:2408.04082v2.
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 μA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
基于紧凑型分布式电荷加速器结构的激光康普顿X射线系统的设计与优化,能够实现疾病的微米级成像,并伴随产生具有与FLASH相关剂量率的超高能电子束。激光康普顿X射线散射的物理原理确保散射的X射线精确地跟随入射电子的轨迹,从而为图像引导的超高能电子束FLASH放射治疗提供了一条途径。能够同时产生激光康普顿X射线和超高能电子束的紧凑型架构的关键在于使用X波段射频加速器结构,该结构已被证明能以超过100 MeV/m的加速梯度运行。通过用与基础加速器系统频率同步的一系列紫外激光脉冲照射高亮度光电子枪,使这些结构以分布式电荷模式运行,在这种模式下,驱动射频脉冲的每个射频周期都填充有低电荷、高亮度的电子束团。紫外脉冲序列是通过一种专利脉冲合成方法产生的,该方法利用加速器的射频时钟对窄带连续波(CW)种子激光进行相位和幅度调制。通过这种方式,有可能从加速器产生高达10 μA的平均束流。这种紧凑型加速器产生的高电流能够通过激光康普顿散射产生足够用于临床成像的X射线,并且是从具有“临床”尺寸的机器中产生。同时,每个射频脉冲产生1000个或更多的单个微束团,能够在小于100 ns的宏束团中产生大于10 nC的电荷。本文还介绍了位于加利福尼亚州欧文的100 MeV级原型系统的设计、建造和测试情况。