Suppr超能文献

基于主题建模的组织中心理契约违背与违反结果分析:当前研究趋势与未来议程

A topic modeling-based analysis for the outcomes of psychological contract breaches and violations in organizations: Current research trends and future agenda.

作者信息

Akar Nuray, Yörük Tayfun

机构信息

Akdeniz University, Department of Management Information Systems, Turkey.

出版信息

Heliyon. 2024 Jul 19;10(14):e34908. doi: 10.1016/j.heliyon.2024.e34908. eCollection 2024 Jul 30.

Abstract

The purpose of this study is to examine the temporal trends of conceptualizations of psychological contract breaches and violations in organizations and their outcomes. Thus, it is envisaged to provide a deep insight into the related topic and to contribute to the elucidation of unexplored aspects by guiding a comprehensive understanding of the perceptual underlying phenomenon. In this study, the topic-modeling method, one of the text-mining methods, using the Latent Dirichlet Allocation (LDA) algorithm was used to gain insights into the main topics on which studies on psychological contract breaches and violations were conducted. Within the framework of the purpose, this study reveals the topics belonging to the concept of psychological contract breaches and violations in organizations. In addition, the titles of these topics, the changes in the interest in these topics over the years, and especially during the COVID-19 outbreak, have been revealed. The 'findings of the study indicate that future research should focus on the affective outcomes of psychological contract breaches and violations in organizations. In addition, future studies can be conducted in which the topics that have reached research saturation in the current study are addressed together with the topics that need research attention.

摘要

本研究的目的是考察组织中心理契约违背和违反概念的时间趋势及其结果。因此,设想通过引导对潜在感知现象的全面理解,深入洞察相关主题,并为阐明未探索的方面做出贡献。在本研究中,使用文本挖掘方法之一的主题建模方法,即基于潜在狄利克雷分配(LDA)算法,来深入了解开展心理契约违背和违反研究的主要主题。在该目的框架内,本研究揭示了组织中心理契约违背和违反概念所属的主题。此外,还揭示了这些主题的标题、多年来尤其是在新冠疫情爆发期间对这些主题兴趣的变化。该研究的结果表明,未来的研究应关注组织中心理契约违背和违反的情感结果。此外,未来的研究可以将本研究中已达到研究饱和的主题与需要研究关注的主题结合起来进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d3/11325778/41e1a4e00194/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验