一种用于预防布鲁氏菌病的新型多表位疫苗的研发。
Development of a novel multi-epitope vaccine for brucellosis prevention.
作者信息
Shang Kaiyu, Zhu Yuejie, Tian Tingting, Shi Huidong, Yin Zhengwei, He Yueyue, Shi Juan, Ding Jianbing, Zhang Fengbo
机构信息
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China.
Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China.
出版信息
Heliyon. 2024 Jul 18;10(14):e34721. doi: 10.1016/j.heliyon.2024.e34721. eCollection 2024 Jul 30.
Brucellosis, a zoonotic disease caused by , presents a significant threat to both animal and human health. In animals, the disease can lead to infertility, miscarriage, and high fever, while in humans, symptoms may include recurrent fever, fatigue, sweating, hepatosplenomegaly, and joint and muscle pain following infection. Treatment often involves long-term antibiotic therapy, placing a substantial psychological and financial burden on patients. While vaccination is crucial for prevention, current animal vaccines have drawbacks such as residual virulence, and a safe and effective human vaccine is lacking. Hence, the development of a vaccine for brucellosis is imperative. In this study, we utilized bioinformatics methods to design a multi-epitope vaccine targeting . Targeting Heme transporter BhuA and polysaccharide export protein, we identified antigenic epitopes, including six cytotoxic T lymphocyte (CTL) dominant epitopes, six helper T lymphocyte (HTL) dominant epitopes, one conformation B cell dominant epitope, and three linear B cell dominant epitopes. By linking these epitopes with appropriate linkers and incorporating a Toll-like receptor (TLR) agonist (human beta-defensin-2) and an auxiliary peptide (Pan HLA-DR epitopes), we constructed the multi-epitope vaccine (MEV). The MEV demonstrated high antigenicity, non-toxicity, non-allergenicity, non-human homology, stability, and solubility. Molecular docking analysis and molecular dynamics simulations confirmed the interaction and stability of the MEV with receptors (MHCI, MHCII, TLR4). Codon optimization and in silico cloning validated the translation efficiency and successful expression of MEV in . Immunological simulations further demonstrated the efficacy of MEV in inducing robust immune responses. In conclusion, our findings suggest that the engineered MEVs have the potential to stimulate both humoral and cellular immune responses, offering valuable insights for the future development of safe and efficient vaccines.
布鲁氏菌病是一种由[具体病原体未给出]引起的人畜共患病,对动物和人类健康都构成重大威胁。在动物中,该疾病可导致不育、流产和高烧,而在人类中,感染后的症状可能包括反复发热、疲劳、出汗、肝脾肿大以及关节和肌肉疼痛。治疗通常需要长期使用抗生素,给患者带来了沉重的心理和经济负担。虽然疫苗接种对于预防至关重要,但目前的动物疫苗存在诸如残余毒力等缺点,并且缺乏安全有效的人类疫苗。因此,开发布鲁氏菌病疫苗势在必行。在本研究中,我们利用生物信息学方法设计了一种针对[具体病原体未给出]的多表位疫苗。针对血红素转运蛋白BhuA和多糖输出蛋白,我们鉴定了抗原表位,包括六个细胞毒性T淋巴细胞(CTL)优势表位、六个辅助性T淋巴细胞(HTL)优势表位、一个构象性B细胞优势表位和三个线性B细胞优势表位。通过用合适的连接子连接这些表位,并掺入一种Toll样受体(TLR)激动剂(人β-防御素-2)和一种辅助肽(泛HLA-DR表位),我们构建了多表位疫苗(MEV)。MEV表现出高抗原性、无毒性、无致敏性、无人类同源性、稳定性和溶解性。分子对接分析和分子动力学模拟证实了MEV与受体(MHCI、MHCII、TLR4)的相互作用和稳定性。密码子优化和电子克隆验证了MEV在[具体宿主未给出]中的翻译效率和成功表达。免疫模拟进一步证明了MEV在诱导强烈免疫反应方面的功效。总之,我们的研究结果表明,工程化的MEV有潜力刺激体液免疫和细胞免疫反应,为未来安全有效的[具体疫苗未提及]疫苗的开发提供了有价值的见解。
相似文献
Heliyon. 2024-7-18
Int Immunopharmacol. 2024-1-25
J Biomol Struct Dyn. 2024-8
引用本文的文献
本文引用的文献
Emerg Infect Dis. 2023-9
Methods Mol Biol. 2023
Vaccines (Basel). 2023-1-25
Front Immunol. 2022