文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

VirulentPred 2.0:一种改进的用于预测细菌病原体中毒力蛋白的方法。

VirulentPred 2.0: An improved method for prediction of virulent proteins in bacterial pathogens.

机构信息

Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.

出版信息

Protein Sci. 2023 Dec;32(12):e4808. doi: 10.1002/pro.4808.


DOI:10.1002/pro.4808
PMID:37872744
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10659933/
Abstract

Virulence proteins in pathogens are essential for causing disease in a host. They enable the pathogen to invade, survive and multiply within the host, thus enhancing its potential to cause disease while also causing evasion of host defense mechanisms. Identifying these factors, especially potential vaccine candidates or drug targets, is critical for vaccine or drug development research. In this context, we present an improved version of VirulentPred 1.0 for rapidly identifying virulent proteins. The VirulentPred 2.0 is based on training machine learning models with experimentally validated virulent protein sequences. VirulentPred 2.0 achieved 84.71% accuracy with the validation dataset and 85.18% on an independent test dataset. The models are trained and evaluated with the latest sequence datasets of virulent proteins, which are three times greater in number than the proteins used in the earlier version of VirulentPred. Moreover, a significant improvement of 11% in the prediction accuracy over the earlier version is achieved with the best position-specific scoring matrix (PSSM)-based model for the latest test dataset. VirulentPred 2.0 is available as a user-friendly web interface at https://bioinfo.icgeb.res.in/virulent2/ and a standalone application suitable for bulk predictions. With higher efficiency and availability as a standalone tool, VirulentPred 2.0 holds immense potential for high throughput yet efficient identification of virulent proteins in bacterial pathogens.

摘要

病原体中的毒力蛋白对于在宿主中引起疾病是必不可少的。它们使病原体能够在宿主内部入侵、存活和繁殖,从而增强其引起疾病的潜力,同时逃避宿主防御机制。鉴定这些因素,特别是潜在的疫苗候选物或药物靶点,对于疫苗或药物开发研究至关重要。在这种情况下,我们提出了 VirulentPred 1.0 的改进版本,用于快速识别毒力蛋白。VirulentPred 2.0 基于使用经过实验验证的毒力蛋白序列训练机器学习模型。VirulentPred 2.0 在验证数据集上的准确率为 84.71%,在独立测试数据集上的准确率为 85.18%。这些模型使用最新的毒力蛋白序列数据集进行训练和评估,这些数据集的数量是 VirulentPred 早期版本中使用的蛋白质的三倍。此外,对于最新的测试数据集,基于最佳位置特异性评分矩阵(PSSM)的模型的预测准确性比早期版本提高了 11%。VirulentPred 2.0 可作为用户友好的网络界面在 https://bioinfo.icgeb.res.in/virulent2/ 上使用,也可作为适用于批量预测的独立应用程序使用。作为一个独立的工具,VirulentPred 2.0 具有更高的效率和可用性,具有巨大的潜力,可以高通量、高效地识别细菌病原体中的毒力蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9824/10659933/cd72323c2f4f/PRO-32-e4808-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9824/10659933/cd72323c2f4f/PRO-32-e4808-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9824/10659933/cd72323c2f4f/PRO-32-e4808-g001.jpg

相似文献

[1]
VirulentPred 2.0: An improved method for prediction of virulent proteins in bacterial pathogens.

Protein Sci. 2023-12

[2]
VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens.

BMC Bioinformatics. 2008-1-28

[3]
Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions.

BMC Bioinformatics. 2013-7-1

[4]
Compositional model based on factorial evolution for realizing multi-task learning in bacterial virulent protein prediction.

Artif Intell Med. 2019-11-7

[5]
A comparison of computational methods for identifying virulence factors.

PLoS One. 2012-8-3

[6]
Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles.

Bioinformatics. 2013-9-23

[7]
DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.

Brief Bioinform. 2021-5-20

[8]
ReVac: a reverse vaccinology computational pipeline for prioritization of prokaryotic protein vaccine candidates.

BMC Genomics. 2019-12-16

[9]
In silico prediction of host-pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets.

Brief Bioinform. 2021-5-20

[10]
ProtVirDB: a database of protozoan virulent proteins.

Bioinformatics. 2009-6-15

引用本文的文献

[1]
Generative and Contrastive Self-Supervised Learning for Virulence Factor Identification Based on Protein-Protein Interaction Networks.

Microorganisms. 2025-7-10

[2]
VirulentHunter: deep learning-based virulence factor predictor illuminates pathogenicity in diverse microbial contexts.

Brief Bioinform. 2025-5-1

[3]
De novo virulence feature discovery and risk assessment in Klebsiella pneumoniae based on microbial genome vectorization.

Commun Biol. 2025-4-17

[4]
Integrative genomics would strengthen AMR understanding through ONE health approach.

Heliyon. 2024-7-17

[5]
New insights into the putative role of leucine-rich repeat proteins of and their participation in host cell invasion: an analysis.

Front Cell Infect Microbiol. 2024-12-13

[6]
Identification and Functional Annotation of Hypothetical Proteins of Pan-Drug-Resistant Strain MRSN845308 Toward Designing Antimicrobial Drug Targets.

Bioinform Biol Insights. 2024-9-23

[7]
Comprehensive in silico analyses of fifty-one uncharacterized proteins from Vibrio cholerae.

PLoS One. 2024

[8]
Genomic insights into a Proteus mirabilis strain inducing avian cellulitis.

Braz J Microbiol. 2024-12

[9]
Artificial intelligence-driven reverse vaccinology for vaccine: Prioritizing epitope-based candidates.

Front Mol Biosci. 2024-8-13

[10]
Development of a novel multi-epitope vaccine for brucellosis prevention.

Heliyon. 2024-7-18

本文引用的文献

[1]
VFDB 2022: a general classification scheme for bacterial virulence factors.

Nucleic Acids Res. 2022-1-7

[2]
Exploring gene knockout strategies to identify potential drug targets using genome-scale metabolic models.

Sci Rep. 2021-1-8

[3]
UniProt: the universal protein knowledgebase in 2021.

Nucleic Acids Res. 2021-1-8

[4]
From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection.

Int J Mol Sci. 2020-5-25

[5]
Machine learning techniques for protein function prediction.

Proteins. 2020-3

[6]
Virulence factors, prevalence and potential transmission of extraintestinal pathogenic isolated from different sources: recent reports.

Gut Pathog. 2019-2-21

[7]
VFDB 2019: a comparative pathogenomic platform with an interactive web interface.

Nucleic Acids Res. 2019-1-8

[8]
Bacterial adhesins, the pathogenic weapons to trick host defense arsenal.

Biomed Pharmacother. 2017-7-12

[9]
Identification of the sequence determinants of protein N-terminal acetylation through a decision tree approach.

BMC Bioinformatics. 2017-6-2

[10]
The threat of antimicrobial resistance in developing countries: causes and control strategies.

Antimicrob Resist Infect Control. 2017-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索